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Preface

Welcome to this book.
This is not a book for learning to program to do mathematics. There are many excellent

books that do this [1, 6, 10]. This is a book for people who would like to learn how to use
programming tools to assist with when doing Mathematics.

Mathematics is often thought of as solving problems. In secondary school this can be
sets of quadratic equations that need to be solved or probabilities of specific hands of cards
that need to be calculated.

As one progresses further into mathematics, the subject becomes less about solving prob-
lems through mechanical calculation and more about using our mathematical knowledge and
insight to choose which problems to solve.

This is what this book attempts to address. It aims to be a user guide for how the
Python programming language can be used to reduce mechanical calculation which leaves
more space to do real mathematics.

Whilst no book should ever try to stop a mathematician from picking up a pen and pencil
and thinking about a problem, this one does aim to show how modern mathematicians can
replace, some of, the use of their pen with openly available Python tools. For example,
in Chapter 3, how to solve an equation by essentially just writing it down is covered. In
Chapter 7 probabilities of specific events are simulated.

In the second part of this book, a more traditional approach of programming with
Python is used to show how to build tools. Not only does this cover commonly taught pro-
gramming techniques but also goes into principles of software development used in industry.
For example, Chapter 16 covers a modern way of writing documentation for software and
Chapter 17 covers how to write code that tests software.

This book is for you, whether you are a seasoned professional mathematician who would
like to know some of the best practices for using Python or perhaps more typically, if you are
a first year university student with an understanding of the mathematical topics covered. I
hope you enjoy it.

xv
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C H A P T E R 1

Introduction

1.1 WHO IS THIS BOOK FOR?

This book aims to introduce readers to programming for mathematics.
It is assumed that readers are used to solving secondary school mathematics problems

of the form:
Given the function f : R → R defined by f(x) = x2 − 3x + 1, obtain the global minima

of the function.
To solve this, you need to apply mathematical knowledge:

1. Differentiate f(x) to get df
dx ;

2. Equate df
dx = 0;

3. Use the second derivative test on the solution to the previous equation.

For each of those three steps you will usually make use of our mathematical tech-
niques:

1. Differentiate f(x):

df

dx
= 2x − 3

2. Equate df
dx = 0:

2x − 3 = 0 ⇒ x = 3/2

3. Use the second derivative test on the solution:

d2f

dx2 = 2 > 0 for all values of x

Thus x = 3/2 is the global minima of the function.

As you progress as a mathematician, mathematical knowledge is more prominent
than mathematical technique: often knowing what to do is the real problem as opposed
to having the technical ability to do it.

This is what this book will cover: programming allows you to instruct a computer to
carry out mathematical techniques.

DOI: 10.1201/9781003451860-1 3
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4 ■ Python for Mathematics

For example, you will learn how to solve the above problem by instructing a computer
which mathematical technique to carry out.

This book covers how to give the correct instructions to a computer.
The following is an example; do not worry too much about the specific code used for

now:
Differentiate f(x) to get df

dx

Jupyter input

1 import sympy as sym
2

3 x = sym.Symbol("x")
4 sym.diff(x ** 2 - 3 * x + 1, x)

2x − 3

Equate df
dx = 0

Jupyter input

1 sym.solveset(2 * x - 3, x)

{
3
2

}

Use the second derivative test on the solution

Jupyter input

1 sym.diff(x ** 2 - 3 * x + 1, x, 2)

2

Figure 1.1 shows a summary.

1.1.1 How is this book different from similar books?

A traditional structure of this book would probably be to re-order the chapters as follows:

1. Chapter 2

2. Chapter on variables (seen in Chapter 11)

3. Chapter on conditionals (seen in Chapter 11)

4. Chapter on loops (seen in Chapter 11)
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Figure 1.1 Knowledge versus technique in this book.

5. Chapter on functions (seen in Chapter 12)

6. Chapters on data structures (seen in Chapter 12)

7. Chapter 13

8. Chapter on Sympy (with an overview of the topics in Chapters 3–5 and 10)

9. Chapter 6

10. Chapter 7

11. Chapter 8

12. Chapter 9

13. Chapter 14
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14. Chapter 15

15. Chapter 16

16. Chapter 17

The choice to flip this structure and start with real use cases (and not code recipes) is
deliberate. The tools covered in Chapters 3–10 can be used with little to no programming
knowledge and need only an understanding of the mathematics. Following this, the topics
covered in Chapters 11–13 let the reader expand on the knowledge and learn basics of
programming. The topics and techniques covered in Chapters 14–17 show how modern
research software is designed.

1.2 WHAT IS IN THIS BOOK?

Most programming texts introduce readers to the building blocks of programming and build
up to using more sophisticated tools for a specific purpose.

This is akin to teaching someone how to forge metal so as to make a nail and then slowly
work up to using more sophisticated tools such as power tools to build a house.

This book will do things in a different way: you will start with using and understanding
tools that are helpful to mathematicians. In the later part of the book, you will cover the
building blocks and you will be able to build your own sophisticated tools.

1.2.1 How is this book organised?

The book is in two parts:

1. Tools for mathematics and

2. Building tools.

The first part of the book will not make use of any novel mathematics. Instead you will
consider a number of mathematics topics that are often covered in secondary school.

• Algebraic manipulation

• Calculus (differentiation and integration)

• Combinatorics (permutations and combinations)

• Probability

• Linear algebra

• Sequences

• Statistics

• Differential equations

The questions you will tackle aim to be familiar in their presentation and description.
What will be different is that no by hand calculations will be done. You will instead
carry them all out using a programming language.

In the second part of the book, you will be encouraged to build your own tools for
tackling problems of your choice.

Each chapter will have four parts:
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• A tutorial: you will be walked through solving a problem. You will be specifically told
what to do and what to expect.

• A how to section: this will be a shorter more succinct section that will detail how to
carry out specific things.

• A further information section: this will be a section with references to further resources
as well as background information about specific things in the chapter and answers
to common questions.

• An exercise section: this will be a number of exercises that you can work on.

There are a number of different Python libraries, programming techniques and frame-
works covered in this book:

• Diátaxis (Chapter 16)

• Recursion (Chapter 8);

• itertools (Chapter 6)

• random (Chapters 7)

• statistics (Chapters 9)

• sympy (Chapters 3–5, 10);

1.2.2 How to use this book?

Readers are welcome to use this book in any way they find useful; however, it is designed
with the following suggestions in mind:

• Start by following along with the tutorial. Carrying out the steps and observing the
outcomes. It is not expected that a reader gains a deep understanding of a given
topic when working through the tutorial. The goal here is to achieve some level of
familiarity.

• After the tutorial, work through the how to section. It is through this section that
a deeper understanding is to be gained by making connections to steps taken in the
tutorial. After working through the how to section it is hoped that the
reader would understand all steps taken in the tutorial.

• The exercise section is an opportunity for the reader to practice the topics in the how
to section.

• After working through those three sections, it is possible that some readers have
further questions or would like to find more information about a given topic. This is
covered in the further information section.

1.2.3 How is code displayed in this book?

In this book, you will see code displayed in a number of different formats. The most common
is the following:
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Jupyter input

1 2 + 2

4

This is shown as input to the programming tool “Jupyter” which is described at length
in Chapter 2. As well as the input, it will also display the output (as above).

You will see typical usage instructions for particular code commands:

Usage

1 sym.solveset(<equation>)

You will see how to write a particular language called “markdown” (covered in Chapters 2
and 16):

Markdown input

1 # Algebra with Python

In Chapters 14–17 you will also see Python code saved to Python files:

Python file

1 print(2 + 2)

You will also see commands written for a command line tool. This is how you will start
“Jupyter” in Chapter 2 but will be introduced more formally in Chapter 14.

Command line input

1 $ ls

Note that when some lines of code are long, they might include a carriage return symbol
(↪→):

Jupyter input

1 123456789 + 123456789 + 123456789 + 123456789 + 123456789 +
123456789 + 123456789↪→
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864197523

The carriage return symbol should be ignored as it is only present in the book due to
the physical constraint of the page width. The code should still be written as a single line.

1.3 WHAT IS NOT THIS BOOK?

With thanks to the progressive understanding of the publisher, there is an online version of
this book. As such, there are two specific things that are not in this book but are available
in the online version:

1. Solutions to the exercises;

2. A collection of further information chapters; this covers specific tools like numpy for
numerical mathematics as well as a more detailed description of working with Jupyter
kernels.

As well as those two things, writing fixes, more exercises and new further information
chapters will continue to be added to the online version.
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C H A P T E R 2

Using Notebooks

2.1 INTRODUCTION

At the advent of Calculus two mathematicians are credited with its formalisation/invention:

• Isaac Newton

• Gottfried Leibniz

One of the differences between the approaches taken by Newton and Leibniz is their
notation. Newton denoted the derivative of a function f as:

Df

Leibniz denoted the derivative with the now more commonly used notation:

df

dx

The mathematics itself is unchanged: what changes is the language/notation used to
communicate it. Similarly when giving instructions through code to a computer there are
a number of notations, more commonly called languages available. This book will be using
a language called Python. Python was originally designed as a teaching language but it is
now popular both in academia and in industry.

In this chapter you will cover:

• Installing the specific distribution of Python on your computer.

• Using something called a Jupyter notebook to write and run Python code.

• Writing descriptive notes using markdown and LATEX (pronounced Lay-tech).

2.2 TUTORIAL

This tutorial will take the reader through an example of using Jupyter notebooks. Jupyter
is the interface to the Python programming language used in the first part of this book.

2.2.1 Installation

1. Navigate to https://www.anaconda.com/products/individual.
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2. Identify and download the version of Python 3 for your operating system (Windows,
MacOS, Linux).

3. Run the installer. I recommend using the default choices during the installation pro-
cess.

If you have already used Python, it is still recommended that you use the Anaconda
distribution. An explanation for this is available in Section 2.5.1. If you are using a
Chromebook or a Tablet, there are websites and applications that you can use instead
of Anaconda to follow along in this book. See the online version of this book for up-to-
date information on this.

2.2.2 Starting a Jupyter notebook server

Open a command line tool:

1. On MacOS search for terminal. See Figure 2.1.

2. On Windows search for Anaconda Prompt (it should be available to you after installing
Anaconda). See Figure 2.2.

In the command line tool type (without the $):

Command line input

1 $ jupyter notebook

Press Enter on your keyboard.

Throughout this book, when there are commands to be typed in a command line they
will be prefixed them with a $. Do not type the $.

This will open a new page in your browser. The url bar at the top should have something
that looks like: http://localhost:8888/tree. This is the general interface to the Jupyter
server. It shows the general file structure on your computer as shown in Figure 2.3.

2.2.3 Creating a new notebook

In the top right, click on the New button (Figure 2.4) and click on Notebook. This will be
followed by a prompt to choose the programming language to use, this is referred to as the
kernel: select Python 3. Change the name of the notebook by clicking on “Untitled” and
changing the name. You will call it “introduction” as shown in Figure 2.5.

2.2.4 Organising your files

Open your file browser:

1. File Explorer on Windows (see Figure 2.7)

2. Finder on MacOS (see Figure 2.6)
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Figure 2.1 Starting the notebook server on MacOS.

Figure 2.2 Starting the notebook server on Windows.
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Figure 2.3 The Jupyter notebook interface.

Figure 2.4 Creating a new notebook.
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Figure 2.5 Changing the notebook name.

Navigate to where your notebook is (this might not be immediately evident): you should
see a introduction.ipynb file. Find a location on your computer where you want to keep
the files for this book, using your file browser:

1. Create a new directory called pfm (short for “Python for Mathematics”);

2. Inside that directory create a new directory called nbs (short for “Notebooks”);

3. Move the introduction.ipynb file to this nbs directory.

Figure 2.6 Creating a new directory on MacOS.

2.2.5 Writing some basic Python code

Go back to the Jupyter notebook server (in your browser). Use the interface to navigate
to the pfm directory and inside that the nbs directory and open the introduction.ipynb
notebook.
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Figure 2.7 Creating a new directory on Windows.

Figure 2.8 Opening a notebook.
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In the first available “cell” write the following calculation:

Usage

1 2 + 2

When you have done that click on the Run button shown in Figure 2.9. You can also use
Shift + Enter as a keyboard shortcut.

Jupyter input

1 2 + 2

Figure 2.9 Running code.

2

Figure 2.9 shows two different things:

1. The input: which is the instruction to Python to use the mathematical technique of
addition to compute 2 + 2.

2. The output: showing the output that Python has returned as a result of the instruc-
tion.
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2.2.6 Writing markdown

One of the reasons for using Jupyter notebooks is that it allows a user to include both code
and communication using something called markdown. Create a new cell and change the cell
type to Markdown. Now write the following in there:

Markdown input

1 As well as using Python in Jupyter notebooks you can also write using
2 Markdown. This allows us to use basic \LaTeX\; as a way to display
3 mathematics. For example:
4

5 1. $\frac{2}{3}$
6 2. $\sum_{i=0}ˆn i$

When you run that it should look like Figure 2.10.

Figure 2.10 Rendering markdown.

2.2.7 Saving your notebook to a different format

Click on File and Download As which brings up a number of formats that Jupyter notebooks
can be exported to. Some of these might need other tools installed on your computer but
a portable option is HTML. Click on HTML (.html). Now use your file browser and open the
downloaded file. This will open in your browser a static version of the file you have been
working on. This is a helpful way to share your work with someone who might not have
Jupyter (or even Python).
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This tutorial has:

• Installed the Anaconda distribution of Python.

• Started a notebook server.

• Created a new notebook.

• Run some Python code.

• Written some markdown.

• Saved the notebook to a different format.

2.3 HOW TO

2.3.1 Install Anaconda

1. Navigate to https://www.anaconda.com/download/success

2. Download the distribution of anaconda for your Operating System

3. Run the installer

2.3.2 Start a Jupyter notebook server

1. Open a command line tool (Anaconda prompt) on Windows, terminal on OS X);

2. Type jupyter notebook and press Enter

2.3.3 Create a new notebook

1. Navigate to the location you want using the Jupyter interface;

2. Click on the new button in the top right;

3. Rename the notebook (change Untitled in the top left to a name of your choice).

2.3.4 Find/open a notebook

Using a file browser you can navigate the directories and files on your computer. Jupyter
notebooks appear as generic files with the .ipynb extension.

You cannot double click on these to open them, you need to navigate to them through
the Jupyter interface.

2.3.5 Run Python code

In a Jupyter notebook cell write an instruction, for example:

Usage

1 3 / 5

and click on the Run button or use Shift + Enter as a keyboard shortcut.

https://www.anaconda.com/download/success
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2.3.6 Carry out basic arithmetic operations

The Python code for the following arithmetic operations are:

1. Addition, 2 + 2: 2 + 2;

2. Subtraction, 3 − 1: 3 - 1;

3. Multiplication, 3 × 5: 3 * 5;

4. Division, 20/5: 20 / 5;

5. Exponentiation, 24: 2 ** 4;

6. Integer remainder, 5 mod 2: 5 % 2;

7. Combining operations, 23+1
4 : (2 ** 3 + 1) / 4;

Note that instructions to a computer (through the code you write) need to be specific.
For example, the ˆ symbol in Python does not mean exponentiation. If you were to type 2
ˆ 4, you would get an error. In later chapters you will see what the specific instructions are
to carry out more complex operations.

2.3.7 Write markdown

To write markdown click on a cell and change the type to Markdown, you can do this by
clicking on Cell, Cell Type or by using the scroll wheel in the menu bar. Markdown
is a lightweight mark up language that allows you to write and include various types of
formatting which include:

1. Headings;

2. Bold and italics;

3. Ordered and unordered lists;

4. Code (which will only be displayed but not run);

5. Hyperlinks

A more detailed guide for writing markdown is given in Section 16.2.2.

2.3.8 Write basic LaTeX

Jupyter notebooks allow for markdown cells to not only include markdown but also include
mathematics using another mark up language called LATEX. Here is a brief overview of the
syntax for arithmetic operations:

• $a+b$ gives: a + b:

• $a-b$ gives: a − b

• $-a$ gives: −a

• $ab$ gives ab

• $a\cdot b$ gives a · b
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• $a\times b$ gives a × b

• $a/b$ gives a/b

• $\frac{a}{b}$ gives a
b

• $a ˆ b$ gives ab

The $<expression>$ delimiters create what is called an “inline” mathematics environ-
ment. You can change these to $$<expression>$$ to give “displayed mathematics”.

You can write a matrix:

\begin{pmatrix}
a&b\\
c&d\\
e&f\\

\end{pmatrix}

gives:




a b
c d
e f




You can write integrals:

$$
\int_{0}ˆ{\infty}x dx

$$

gives:

 ∞

0
xdx

You can write summations:

$$
\sum_{0}ˆ{n}i

$$

gives:

n
0

i

2.3.9 Save the output in a different format

Click on File, then Download as and choose the format you want to use. HTML is a portable
option that can be viewed on most devices, note however that you cannot run the cells:
what you are downloading is a static version of your notebook.
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2.4 EXERCISES

1. Create a new notebook rename it “exercises”. Navigate to it using your file browser
to make sure you can find it.

2. Write and run some Python code to carry out the following calculations.

(a) 3 + 8
(b) 3/7
(c) 456/21
(d) 43+2

2×5 − 5 1
2

3. Write a markdown cell with the following and view the rendered version:

# Euler's equation

$$
e ˆ {i\pi} = -1
$$

4. Render the following expressions by writing markdown.

(a) 43+2
2×5

(b) −5 1
2

(c) df
dx

(d)
∫ 12

5 x2dx

(e)
(

4 12 3
2 x i

)

5. Save your notebook to HTML and open and view it.

6. Download the notebook available at 10.5281/zenodo.7118738 and check that you are
able to open it.

2.5 FURTHER INFORMATION

2.5.1 Why use anaconda?

Python is a free and open source piece of software. One of the main reasons for its popularity
is that there are a number of separate tools that work well with it, these are called libraries.
Sometimes installing these libraries can require an understanding of some potential pitfalls.
In scientific circles the Anaconda distribution was developed to give a single download of
not only Python but a lot of commonly used libraries.

2.5.2 Why use Jupyter?

There are variety of ways to write and run Python:

1. Using an interactive notebook environment like Jupyter;

2. Using an integrated development environment and/or editor.
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The second part of this book will use an editor. One strength of Jupyter is that it allows
you to include communication (writing through markdown) with your code. This allows you
to use code and describe what you are using it for. Another advantage is that it allows you
to immediately have your output next to your input. There are some limitations to Jupyter
as an editor which is why you will explore using a powerful editor in the second part of the
course. In general:

1. Jupyter is a fantastic way to interactively use and communicate code;

2. Integrated development environments and/or editors are the correct tool to write
software.

In this book you will learn to use either approach in the appropriate manner for the
right task. For the first part, code will be used interactively and so you will use Jupyter
notebooks.

2.5.3 Why can I not double click on a Jupyter notebook file?

When you double click on a file and your computer opens it in an application because a
default is set for the particular file extension. For example, double clicking on main.docx
will automatically open up the document using a word processor (like Microsoft word). This
is because the file has the extension .docx and your operating system has set that anything
with that extension will be opened in that particular application. You could also open the
application and navigate to the file and open it directly.

With Jupyter notebooks no default is set by the operating system as the application
that opens it is in fact a local web server in your browser. As such you do not have a choice
and need to open it in the Jupyter interface.

2.5.4 Where can I find keyboard shortcuts for using Jupyter

In a notebook if you go to the menu bar and click on Help followed by Keyboard Shortcuts
you will find a number of helpful keyboard shortcuts.

For example, when on a cell pressing Esc followed by m will turn the cell into a markdown
cell.

2.5.5 What is markdown?

As described at https://www.markdownguide.org/getting-started/:

“Markdown is a lightweight markup language that you can use to add formatting
elements to plain text documents. Created by John Gruber in 2004, Markdown
is now one of the world’s most popular markup languages.”

2.5.6 What is LaTeX?

As described at https://www.latex-project.org/about/:

“LaTeX;, which is pronounced ‘Lah-tech’ or ‘Lay-tech’ (to rhyme with ‘blech’ or
‘Bertolt Brecht’), is a document preparation system for high-quality typesetting.
It is most often used for medium-to-large technical or scientific documents but
it can be used for almost any form of publishing.”

https://www.markdownguide.org/getting-started
https://www.latex-project.org/about
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“LaTeX is not a word processor! Instead, LaTeX encourages authors not to
worry too much about the appearance of their documents but to concentrate on
getting the right content.”

2.5.7 Can I use \( and \) instead of $ for LATEX?

You will see in some places that \(, \) or \[, \] can be used as delimiters for LATEX when
used outside of Jupyter notebooks. This is in fact recommended for a number of reasons,
one of which is given at https://vknight.org/tex/:

“Note that using \( and \) is preferred over $. One of the reasons is that it is
easier for humans (and machines) to find the start and end of some mathematics.”

If you want to use \(, \) or \[, \] as mathematics delimiters within Jupyter notebooks,
you need to escape the \ and use: \\(, \\) or \\[, \\] instead.

2.5.8 What is a markup language?

LATEX and markdown are both examples of what is called a markup language. An-
other common example of a markup language is html (the way web pages are writ-
ten). A markup language is a system that allows us to write content alongside anno-
tations to specify how the content is to appear. This description of markdown from
https://www.markdownguide.org/getting-started/ applies to any markup language:

“Using Markdown is different than using a WYSIWYG editor. In an application
like Microsoft Word, you click buttons to format words and phrases, and the
changes are visible immediately. Markdown isn’t like that. When you create
a Markdown-formatted file, you add Markdown syntax to the text to indicate
which words and phrases should look different.”

In general whilst it might take a little while to learn all the intricacies of a markup
language it allows for more portability and precision. Markup languages differ in complexity:

• LATEX is incredibly sophisticated and has a huge range of capabilities.

• Markdown is designed to be basic with a few specific annotations to remember.

https://www.markdownguide.org/getting-started
https://vknight.org/tex
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Algebra

3.1 INTRODUCTION

A typical secondary school curriculum includes Algebra which is described in the A-level
syllabus as:

“Algebra: this is an essential tool which supports and expresses mathematical
reasoning and provides a means to generalise across a number of contexts.”

In practice this often means:

• Manipulating numeric expressions;

• Manipulating symbolic expressions;

• Solving equations.

You can use a computer to carry out some of these techniques.

This chapter covers:

• Manipulating numeric and symbolic expressions.

• Solving equations.

3.2 TUTORIAL

To demonstrate the ways in which a computer can assist with Algebra, in this tutorial you
will solve the following two problems:

1. Rationalise the denominator of 1√
2+1

2. Consider the : f(x) = 2x2 + x + 1:

(a) Calculate the discriminant of the equation 2x2 + x + 1 = 0. What does this tell
you about the solutions to the equation? What does this tell you about the graph
of f(x)?

(b) By completing the square, show that the minimum point of f(x) is
(
− 1

4 , 7
8
)

To do this, a specific collection of tools available in Python will be used. Often specific
sets of tools are separated into things called libraries. Start by telling Python that you
want to use the specific library for symbolic mathematics:

DOI: 10.1201/9781003451860-3 27
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Jupyter input

1 import sympy

This will allow you to solve the first part of the question. Create a variable expression
and assign it a value of 1√

2+1 .

Jupyter input

1 expression = 1 / (sympy.sqrt(2) + 1)
2 expression

1
1 +

√
2

This is not what would happen if you plugged the above into a basic calculator, it
would instead give you a value of:

Jupyter input

1 float(expression)

0.41421356237309503

The sympy library has a diverse set of tools available, one of which is to algorithmically
attempt to simplify an expression. Here is how to do that:

Jupyter input

1 sympy.simplify(expression)

−1 +
√

2

This implies that:

1√
2 + 1

= −1 +
√

2

Multiplying both sides by
√

2 + 1 gives:

1 = 1√
2 + 1

×
(√

2 + 1
)

=
(

−1 +
√

2
)

×
(√

2 + 1
)
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The sympy.simplify command did not give much insight into what happened but you
can confirm the above manipulation by expanding

(
−1 +

√
2
)

×
(√

2 + 1
)
. Here is how to

do that:

Jupyter input

1 sympy.expand((-1 + sympy.sqrt(2)) * (1 + sympy.sqrt(2)))

1
The sympy library allows you to carry out basic expression manipulation. Now consider

the second part of the question:

1. Consider the : f(x) = 2x2 + x + 1:

2. Calculate the of the equation 2x2 + x + 1 = 0. What does this tell you about the
solutions to the equation? What does this tell you about the graph of f(x)?

3. By completing the square, show that the minimum point of f(x) is
(
− 1

4 , 7
8
)

Start by reassigning the value of the variable expression to be the expression: 2x2+x+1.

Jupyter input

1 x = sympy.Symbol("x")
2 expression = 2 * x ** 2 + x + 1
3 expression

2x2 + x + 1
The first line communicates to the code that x is going to be a symbolic variable.

Recall that the ** symbol is how you communicate exponentiation.

You can immediately use this to compute the:

Jupyter input

1 sympy.discriminant(expression)

−7
Now, complement this with mathematical knowledge: if a quadratic has a negative dis-

criminant, then it does not have any roots and all the values are of the same sign as the
coefficient of x2. Which in this case is 2 > 0. Confirm this by directly creating the equation.
Do this by creating a variable equation and assigning it the equation which has a lhs and
a rhs:
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Jupyter input

1 equation = sympy.Eq(lhs=expression, rhs=0)
2 equation

2x2 + x + 1 = 0

Now ask sympy to solve it:

Jupyter input

1 sympy.solveset(equation)

{
−1

4 −
√

7i

4 , −1
4 +

√
7i

4

}

Indeed the only solutions are imaginary numbers: this confirms that the graph of f(x)
is a convex parabola that is above the y = 0 line. Now complete the square so that you can
write:

f(x) = a(x − b)2 + c

for some values of a, b, c. Create variables that have those 3 constants as value but also
create a variable completed square and assign it the general expression:

Jupyter input

1 a, b, c = sympy.Symbol("a"), sympy.Symbol("b"), sympy.Symbol("c")
2 completed_square = a * (x - b) ** 2 + c
3 completed_square

a (−b + x)2 + c

Expand this:

Jupyter input

1 sympy.expand(completed_square)

ab2 − 2abx + ax2 + c

Use sympy to solve the various equations that arise from comparing the coefficients of:
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f(x) = 2x2 + x + 1

with the completed square. First, you see that the coefficient of x2 gives you an equation:

a = 2

For completeness write the code that solves this trivial equation:

Jupyter input

1 equation = sympy.Eq(a, 2)
2 sympy.solveset(equation, a)

{2}

Now substitute this value of a into the completed square and update the variable with
the new value:

Jupyter input

1 completed_square = completed_square.subs({a: 2})
2 completed_square

c + 2 (−b + x)2

There are different types of brackets being used here: both () and {}. This is important
and has specific meaning in Python which will be covered in future chapters.

Now look at the expression with the two remaining constants:

Jupyter input

1 sympy.expand(completed_square)

2b2 − 4bx + c + 2x2

Comparing the coefficients of x gives:

−4b = 1
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Jupyter input

1 equation = sympy.Eq(-4 * b, 1)
2 sympy.solveset(equation, b)

{
−1

4

}

Substitute this value of b back into our expression. Make a point to tell sympy to treat
1/4 symbolically and to not calculate the numeric value:

Jupyter input

1 completed_square = completed_square.subs({b: -1 / sympy.S(4)})
2 completed_square

c + 2
(

x + 1
4

)2

Expand this to see the expression with the one remaining constant gives:

Jupyter input

1 sympy.expand(completed_square)

c + 2x2 + x + 1
8

This gives a final equation for the constant term:

c + 1/8 = 1

Now use sympy to find the value of c:

Jupyter input

1 sympy.solveset(sympy.Eq(c + sympy.S(1) / 8, 1), c)

{
7
8

}

As before substitute in and update the value of completed square:
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Jupyter input

1 completed_square = completed_square.subs({c: 7 / sympy.S(8)})
2 completed_square

2
(

x + 1
4

)2
+ 7

8

Using this shows that the there are indeed no values of x which give negative values of
f(x) as f(x) is a square added to a constant. The minimum is when x = −1/4 which gives:
f(−1/4) = 7/8:

Jupyter input

1 completed_square.subs({x: -1 / sympy.S(4)})

7
8

This tutorial has:

• Created symbolic expressions.

• Obtained approximate values for numerical symbolic expressions.

• Expanded and simplified symbolic expressions.

• Created symbolic equations.

• Solve symbolic equations.

• Substituted values into symbolic expressions.

3.3 HOW TO

3.3.1 Create a symbolic numeric value

To create a symbolic numerical value use sympy.S.

Usage

1 sympy.S(a)

For example:
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Jupyter input

1 import sympy
2

3 value = sympy.S(3)
4 value

3

If you combine a symbolic value with a non-symbolic value, it will automatically give a
symbolic value:

Jupyter input

1 1 / value

1
3

3.3.2 Get the numerical value of a symbolic expression

You can get the numerical value of a symbolic value using float or int:

• float will give the numeric approximation in {R}

Usage

1 float(x)

• int will give the integer value

Usage

1 int(x)

For example, to create a symbolic numeric variable with value frac15:

Jupyter input

1 value = 1 / sympy.S(5)
2 value
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1
5

To get the numerical value:

Jupyter input

1 float(value)

0.2

To get the integer part:

Jupyter input

1 int(value)

0

This is not rounding to the nearest integer. It is returning the integer part.

3.3.3 Factor an expression

Use the sympy.factor tool to factor expressions.

Jupyter input

1 sympy.factor(expression)

For example:

Jupyter input

1 x = sympy.Symbol("x")
2 sympy.factor(x ** 2 - 9)

(x − 3) (x + 3)

3.3.4 Expand an expression

Use the sympy.expand tool to expand expressions.
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Jupyter input

1 sympy.expand(expression)

For example:

Jupyter input

1 sympy.expand((x - 3) * (x + 3))

x2 − 9

3.3.5 Simplify an expression

Use the sympy.simplify tool to simplify an expression.

Jupyter input

1 sympy.simplify(expression)

For example:

Jupyter input

1 sympy.simplify((x - 3) * (x + 3))

x2 − 9

This will not always give the expected (or any) result. At times it could be more
beneficial to use sympy.expand and/or sympy.factor.

3.3.6 Solve an equation

Use the sympy.solveset tool to solve an equation. It takes two values as inputs. The first
is either:

• An expression for which a root is to be found

• An equation

The second is the variable you want to solve for.
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Usage

1 sympy.solveset(equation, variable)

Here is how you can use sympy to obtain the roots of the general:

ax2 + bx + c

Jupyter input

1 a = sympy.Symbol("a")
2 b = sympy.Symbol("b")
3 c = sympy.Symbol("c")
4 quadratic = a * x ** 2 + b * x + c
5 sympy.solveset(quadratic, x)

{
− b

2a
−

√
−4ac + b2

2a
, − b

2a
+

√
−4ac + b2

2a

}

Here is to solve the same equation but not for x but for b:

Jupyter input

1 sympy.solveset(quadratic, b)

{
−ax2 + c

x

}

It is however clearer to specifically write the equation to solve:

Jupyter input

1 equation = sympy.Eq(a * x ** 2 + b * x + c, 0)
2 sympy.solveset(equation, x)

{
− b

2a
−

√
−4ac + b2

2a
, − b

2a
+

√
−4ac + b2

2a

}
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3.3.7 Substitute a value into an expression

Given a sympy expression it is possible to substitute values into it using the .subs() tool.

Usage

1 expression.subs({variable: value})

It is possible to pass multiple variables at a time. For example, to substitute the values
for a, b, c into the :

Jupyter input

1 quadratic = a * x ** 2 + b * x + c
2 quadratic.subs({a: 1, b: sympy.S(7) / 8, c: 0})

x2 + 7x

8

3.4 EXERCISES

If you are not sure how to do something, have a look at the “How To” section.

1. Simplify the following expressions.

(a) 3√
3

(b) 278

2122−32

(c) 80

(d) a4b−2 + a3b2 + a4b0

2. Solve the following equations.

(a) x + 3 = −1
(b) 3x2 − 2x = 5
(c) x(x − 1)(x + 3) = 0
(d) 4x3 + 7x − 24 = 1

3. Consider the equation: x2 + 4 − y = 1
y .

(a) Find the solution to this equation for x.
(b) Obtain the specific solution when y = 5. Do this in two ways: substitute the

value into your equation and substitute the value into your solution.

4. Consider: f(x) = 4x2 + 16x + 25

(a) Calculate the discriminant of the equation 4x2 + 16x + 25 = 0. What does this
tell you about the solutions to the equation? What does this tell you about the
graph of f(x)?
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(b) By completing the square, show that the minimum point of f(x) is (−2, 9)

5. Consider: f(x) = −3x2 + 24x − 97

(a) Calculate the discriminant of the equation −3x2 + 24x − 97 = 0. What does this
tell you about the solutions to the equation? What does this tell you about the
graph of f(x)?

(b) By completing the square, show that the maximum point of f(x) is (4, −49).

6. Consider the function f(x) = x2 + ax + b.

(a) Given that f(0) = 0 and f(3) = 0 obtain the values of a and b.
(b) By completing the square, confirm that graph of f(x) has a line of symmetry at

x = 3
2 .

3.5 FURTHER INFORMATION

3.5.1 Why is some code in separate libraries?

When you run the import sympy command you are telling Python that you want to use a
specific set of tools. You will see other examples of this throughout this book. One of the
advantages of having code in libraries is that it is more efficient for Python to only use what
is needed. There are two types of Python libraries:

• Those that are parts of the so-called “standard library”: these are parts of Python
itself.

• Those that are completely separate: sympy is one such example of this.
This separation allows for the development of tools to be independent of each other.

The developers of sympy do not need to coordinate with the developers of Python to make
new releases of the software.

3.5.2 Why do I need to use sympy?

sympy is the library for symbolic mathematics. There are other python libraries for carrying
out mathematics in Python. For example, compute the value of the following expression:

(
√

2 + 2)2 − 2

You could compute this using the math library (for the square root tool):

Jupyter input

1 import math
2

3 (math.sqrt(2) + 2) ** 2 - 2

9.65685424949238
You could also make use of the fact that you do not need a square root tool at all:

(
√

2 + 2)2 − 2 = (21/2 + 2)2 − 2
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Jupyter input

1 (2 ** (1 / 2) + 2) ** 2 - 2

9.65685424949238

You see that in both those instances, you have a numeric value for the expression that
seems to be precise up to 14 decimal places.

However, that is not the exact value of that expression. The exact value of the expression
needs to be computed symbolically:

Jupyter input

1 import sympy
2

3 expression = (sympy.sqrt(2) + 2) ** 2 - 2
4 sympy.expand(expression)

4 + 4
√

2

This is one example of why sympy is an effective tool for mathematicians. The other one
seen in this chapter is being able to compute expressions with no numerical value at all:

Jupyter input

1 a = sympy.Symbol("a")
2 b = sympy.Symbol("b")
3 sympy.factor(a ** 2 - b ** 2)

(a − b) (a + b)

3.5.3 Why do I sometimes see from sympy import *?

There a number of resources available from which you can learn to use sympy. In some
instances you will not see import sympy but instead you will see from sympy import *.

This it not a good way to do it.
What this does is taking all the tools inside of sympy and putting it at the same level of

all the other tools available to you. The problem with doing this is that it no longer makes
your code clear. An example of this are trigonometric functions. These exist in a number
of libraries:
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Jupyter input

1 import math

Jupyter input

1 import sympy

Jupyter input

1 sympy.cos(0)

1

Jupyter input

1 math.cos(0)

1.0

One of these tools allows you to carry out exact computations:

Jupyter input

1 sympy.cos(sympy.pi / 4)

√
2

2

Jupyter input

1 math.cos(math.pi / 4)

0.7071067811865476

If you chose to import all the functionality using from sympy import *, then you cannot
tell immediately which function you are using (except from its output):
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Jupyter input

1 from sympy import *

Jupyter input

1 from math import *

Jupyter input

1 cos(pi / 4)

0.7071067811865476

In that case the second import has overwritten the first.

It is never recommended to use import * which makes your code less clear and
you are more likely to make mistakes when your code is not clear.

3.5.4 How to extract a solution from the output of sympy.solveset?

In some cases you might want to directly access the items in a solution set. For example,
consider the equation (x − 1)(x − 2).

Jupyter input

1 import sympy
2

3 x = sympy.Symbol("x")
4 expression = (x - 1) * (x - 2)
5 equation = sympy.Eq(expression, 0)
6 set_of_solutions = sympy.solveset(equation, x)
7 set_of_solutions

{1, 2}

The set of solutions has value the set of solutions of the equation. If you wanted to
access them directly, you can use the following:
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Jupyter input

1 tuple_of_solutions = set_of_solutions.args
2 tuple_of_solutions

(1, 2)
This creates a finite ordered tuple of the solutions. You can use concepts that are

covered in Chapter 6 and access them directly. Because there are two roots you can use the
following to create two new variables:

Jupyter input

1 x1, x2 = tuple_of_solutions

Substitute these values directly into the expression:

Jupyter input

1 expression.subs({x: x1})

0

Jupyter input

1 expression.subs({x: x2})

0

Note that this is not always possible to get a finite ordered tuple of the solutions, for
example, there are some equations where the set of solutions is an infinite set:

Jupyter input

1 equation = sympy.Eq(sym.cos(x / 5), 0)
2 set_of_solutions = sympy.solveset(equation, x)
3 set_of_solutions

{
10nπ + 5π

2

∣∣∣∣ n ∈ Z
}

∪
{

10nπ + 15π

2

∣∣∣∣ n ∈ Z
}



44 ■ Python for Mathematics

3.5.5 Why do I sometimes see import sympy as sym?

In some resources you will see that instead of import sympy people use: import sympy as
sym. This is called aliasing. This is common and takes advantage of the fact that Python
can import a library and give it an alias/nickname at the same time:

Usage

1 import <library> as <nickname>

So with sympy you can use:

Jupyter input

1 import sympy as sym
2

3 sym.cos(sym.pi / 4)

√
2

2

There is nothing stopping you using whatever alias you want:

Jupyter input

1 import sympy as a_poor_name_choice
2

3 a_poor_name_choice.cos(a_poor_name_choice.pi / 4)

√
2

2

It is important when aliasing to use accepted conventions for these nicknames. For
sympy, an accepted convention is indeed import sympy as sym.



C H A P T E R 4

Calculus

The A-level syllabus describes Calculus as:

“Calculus: this is a fundamental element which describes change in dynamic
situations and underlines the links between functions and graphs.”

In practice this often means:

• taking of functions;

• functions;

• functions.

Here you will see how to instruct a computer to carry out these techniques.

In this chapter you will cover:

• Taking limits of functions.

• Differentiating functions.

• Computing definite and indefinite integrals.

4.1 TUTORIAL

You will solve the following problem using a computer to assist with the technical aspects:
Consider the function f(x) = 24x(a−4x)+2(a−8x)(b−4x)

(b−4x)4

1. Given that df
dx |x=0 = 0, d2f

dx2 |x=0 = −1 and that b > 0 find the values of a and b.

2. For the specific values of a and b, find

(a) limx→0 f(x);
(b) limx→∞ f(x);
(c)

∫
f(x)dx;

(d)
∫ 20

5 f(x)dx.

Sympy is once again the library you will use for this. You will start by creating a variable
expression that has the value of the expression of f(x):
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Jupyter input

1 import sympy as sym
2

3 x = sym.Symbol("x")
4 a = sym.Symbol("a")
5 b = sym.Symbol("b")
6 expression = (24 * x * (a - 4 * x) + 2 * (a - 8 * x) * (b - 4 * x)) /

((b - 4 * x) ** 4)↪→

7 expression

24x (a − 4x) + (2a − 16x) (b − 4x)
(b − 4x)4

You will use sympy.diff to calculate the derivative. This tool takes two inputs:

• the first is the expression you are differentiating. Essentially this is the numerator of
df
dx .

• the second is the variable you are differentiating with respect to. This is the denomi-
nator of df

dx .

You have imported import sympy as sym so you are going to write sym.diff:

Jupyter input

1 derivative = sym.diff(expression, x)
2 derivative

16a − 16b − 64x

(b − 4x)4 + 16 · (24x (a − 4x) + (2a − 16x) (b − 4x))
(b − 4x)5

Factorise that to make it slightly clearer:

Jupyter input

1 sym.factor(derivative)

16
(
−3ab − 12ax + b2 + 16bx + 16x2)

(−b + 4x)5

You will now create the first equation, which is obtained by substituting x = 0 into the
value of the derivative and equating that to 0:
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Jupyter input

1 first_equation = sym.Eq(derivative.subs({x: 0}), 0)
2 first_equation

32a

b4 + 16a − 16b

b4 = 0

Factor that equation:

Jupyter input

1 sym.factor(first_equation)

16 · (3a − b)
b4 = 0

Now you are going to create the second equation, substituting x = 0 into the value of
the second derivative. Calculate the second derivative by passing a third (optional) input
to sym.diff:

Jupyter input

1 second_derivative = sym.diff(expression, x, 2)
2 second_derivative

64
(

−1 − 8(−a+b+4x)
b−4x + 10·(12x(a−4x)+(a−8x)(b−4x))

(b−4x)2

)

(b − 4x)4

Equate this expression to −1:

Jupyter input

1 second_equation = sym.Eq(second_derivative.subs({x: 0}), -1)
2 second_equation

64 ·
(

10a
b − 1 − 8(−a+b)

b

)

b4 = −1

Now solve the first equation to obtain a value for a:
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Jupyter input

1 sym.solveset(first_equation, a)

{
b

3

}

Now to substitute that value for a and solve the second equation for b:

Jupyter input

1 second_equation = second_equation.subs({a: b / 3})
2 second_equation

−192
b4 = −1

Jupyter input

1 sym.solveset(second_equation, b)

{
−2

√
2 · 4

√
3, 2

√
2 · 4

√
3, −2

√
2 · 4

√
3i, 2

√
2 · 4

√
3i

}

Recalling the question you know that b > 0, thus b = 2
√

2 4
√

3 and a = 2
√

2 4√3
3 . You will

substitute these values back and finish the question:

Jupyter input

1 expression = expression.subs(
2 {
3 a: 2 * sym.sqrt(2) * sym.root(3, 4) / 3,
4 b: 2 * sym.sqrt(2) * sym.root(3, 4),
5 }
6 )
7 expression

24x
(

−4x + 2
√

2· 4√3
3

)
+

(
−16x + 4

√
2· 4√3
3

) (
−4x + 2

√
2 · 4

√
3
)

(
−4x + 2

√
2 · 4

√
3
)4

You are using the sym.root command for the generic nth root. You can confirm this:
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Jupyter input

1 sym.diff(expression, x).subs({x: 0})

0

Jupyter input

1 sym.diff(expression, x, 2).subs({x: 0})

−1

Now you will calculate the using sym.limit, this takes three inputs:

• The expression you are taking the limit of.

• The variable that is changing.

• The value that the variable is tending towards.

Jupyter input

1 sym.limit(expression, x, 0)

√
3

36

Jupyter input

1 sym.limit(expression, x, sym.oo)

0

Now you are going to calculate the indefinite integral using sympy.integrate. This
tool takes two inputs as:

• the first is the expression you’re integrating. This is the f in
∫ b

a
fdx.

• the second is the remaining information needed to calculate the integral: x.
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Jupyter input

1 sym.factor(sym.integrate(expression, x))

x
(
6x −

√
2 · 4

√
3
)

12 ·
(

4x3 − 6
√

2 · 4
√

3x2 + 6
√

3x −
√

2 · 3 3
4

)

If you want to calculate a definite integral, then instead of passing the single variable
you pass a tuple which contains the variables as the bounds of integration:

Jupyter input

1 sym.factor(sym.integrate(expression, (x, 5, 20)))

−
5

(
−5000

√
2 · 4

√
3 − 1200

√
3 + 75

√
2 · 3 3

4 + 119997
)

2
(

−32000 − 120
√

3 +
√

2 · 3 3
4 + 2400

√
2 · 4

√
3
) (

−500 − 30
√

3 +
√

2 · 3 3
4 + 150

√
2 · 4

√
3
)

This tutorial has:

• Simplified a rational quotient;

• Differentiated symbolic expressions;

• Solved algebraic equations.

4.2 HOW TO

4.2.1 Calculate the derivative of an expression.

You can calculate the derivative of an expression using sympy.diff which takes, an expres-
sion, a variable and a degree.

Usage

1 sympy.diff(expression, variable, degree=1)

The default value of degree is 1. For example, to compute d(4x3+2x+1
dx :
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Jupyter input

1 import sympy as sym
2

3 x = sym.Symbol("x")
4 expression = 4 * x ** 3 + 2 * x + 1
5 sym.diff(expression, x)

12x2 + 2

To compute the second derivative: d2(4x3+2x+1)
dx2

Jupyter input

1 sym.diff(expression, x, 2)

24x

4.2.2 Calculate the indefinite integral of an expression.

You can calculate the indefinite integral of an expression using sympy.integrate, which
takes an expression and a variable.

Usage

1 sympy.integrate(expression, variable)

For example, to compute
∫

4x3 + 2x + 1dx:

Jupyter input

1 sym.integrate(expression, x)

x4 + x2 + x

4.2.3 Calculate the definite integral of an expression.

You can calculate the definite integral of an expression using sympy.integrate. The first
argument is an expression but instead of passing a variable as the second argument you
pass a tuple with the variable as well as the upper and lower bounds of integration.
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Usage

1 sympy.integrate(expression, (variable, lower_bound, upper_bound))

For example, to compute
∫ 4

0 4x3 + 2x + 1dx:

Jupyter input

1 sym.integrate(expression, (x, 0, 4))

276

4.2.4 Use ∞
In sympy you can access ∞ using sym.oo:

Usage

1 sympy.oo

For example:

Jupyter input

1 sym.oo

∞

4.2.5 Calculate limits of an expression

You can calculate using sympy.limit. The first argument is the expression, then the variable
and finally the expression the variable tends to.

Usage

1 sympy.limit(expression, variable, value)

For example, to compute limh→0
4x3+2x+1−4(x−h)3−2(x−h)−1

h :
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Jupyter input

1 h = sym.Symbol("h")
2 expression = (4 * x ** 3 + 2 * x + 1 - 4 * (x - h) ** 3 - 2 * (x - h) -

1) / h↪→

3 sym.limit(expression, h, 0)

12x2 + 2

4.3 EXERCISES

1. For each of the following functions calculate df
dx , d2f

dx2 and
∫

f(x)dx.

(a) f(x) = x

(b) f(x) = x
1
3

(c) f(x) = 2x(x − 3)(sin(x) − 5)
(d) f(x) = 3x3 + 6

√
x + 3

2. Consider the function f(x) = 2x + 1. By differentiating from first principles show
that f ′(x) = 2.

3. Consider the second derivative f ′′(x) = 6x + 4 of some cubic function f(x).

(a) Find f ′(x)
(b) You are given that f(0) = 10 and f(1) = 13, find f(x).
(c) Find all the stationary points of f(x) and determine their nature.

4. Consider the function f(x) = 2
3 x3 + bx2 + 2x + 3, where b is some undetermined

coefficient.

(a) Find f ′(x) and f ′′(x).
(b) You are given that f(x) has a stationary point at x = 2. Use this information to

find b.
(c) Find the coordinates of the other stationary point.
(d) Determine the nature of all stationary points.

5. Consider the functions f(x) = −x2 + 4x + 4 and g(x) = 3x2 − 2x − 2.

(a) Create a variable turning points which has value the turning points of f(x).
(b) Create variable intersection points which has value of the points where f(x)

and g(x) intersect.
(c) Using your answers to part b. calculate the area of the region between f and g.

Assign this value to a variable area betyouen.

4.4 FURTHER INFORMATION

4.4.1 How can you plot a function

It is possible to plot a function using sympy using the sympy.plot function:
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Usage

1 sympy.plot(expression)

So for example, here is a plot of f(x) = x2 + 3x + 1:

Jupyter input

1 import sympy as sym
2

3 x = sym.Symbol("x")
4 sym.plot(x ** 2 + 3 * x + 1)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x

0

20

40

60

80

100

120

f
(
x
)

It is possible to specify the x and combine it with other plots:

Jupyter input

1 sym.plot(x ** 2 + 3 * x + 1, xlim=(-5, 5))
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4 2 0 2 4

x

0

20

40

60

80

100

120

f
(
x
)

This plotting solution is good if you want to take a look at a function quickly
but it is not recommended. The main python library for plotting is called matplotlib
and is covered in a chapter of the online version of the book.
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Matrices

Matrices form the building block of an area of mathematics referred to as Linear Algebra.
The dictionary definition of a matrix is:

“A group of numbers or other symbols arranged in a rectangle that can be used
together as a single unit to solve particular mathematical problems.”

The particular mathematical problems referred to usually correspond to solving large
systems of linear equations. However, they have become an area of interest in their own
right and manipulating matrices usually corresponds to:

• calculating the determinant of a matrix

• calculating the inverse of a matrix

Here you will see how to instruct a computer to carry out these techniques. In this
chapter you will cover:

• Creating matrices.

• Manipulating matrices.

• Solving a system of linear equations using matrices.

5.1 TUTORIAL

You will solve the following problem using a computer to assist with the technical aspects:

The matrix A is given by A =




a 1 1
1 a 1
1 1 2


.

1. Find the determinant of A

2. Hence find the values of a for which A is singular.

3. For the following values of a, when possible obtain A−1 and confirm the result by
computing AA−1:

(a) a = 0;
(b) a = 1;
(c) a = 2;
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(d) a = 3.

sympy is once again the library you will use for this. You will start by defining the matrix
A:

Jupyter input

1 import sympy as sym
2

3 a = sym.symbol("a")
4 A = sym.matrix([[a, 1, 1], [1, a, 1], [1, 1, 2]])

You can now create a variable and assign it the value of the determinant of A:

Jupyter input

1 determinant = A.det()
2 determinant

2a2 − 2a

A matrix is singular if it has 0. You can find the values of a for which this occurs:

Jupyter input

1 sym.solveset(determinant, a)

{0, 1}

Thus, it is not possible to find the inverse of A for a ∈ {0, 1}. However for a = 2:

Jupyter input

1 A.subs({a: 2})




2 1 1
1 2 1
1 1 2



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Jupyter input

1 A.subs({a: 2}).inv()




3
4 − 1

4 − 1
4

− 1
4

3
4 − 1

4
− 1

4 − 1
4

3
4




To carry out matrix multiplication you use the @ symbol:

Jupyter input

1 A.subs({a: 2}).inv() @ A.subs({a: 2})




1 0 0
0 1 0
0 0 1




and for a = 3:

Jupyter input

1 A.subs({a: 3}).inv()




5
12 − 1

12 − 1
6

− 1
12

5
12 − 1

6
− 1

6 − 1
6

2
3




Jupyter input

1 A.subs({a: 3}).inv() @ A.subs({a: 3})




1 0 0
0 1 0
0 0 1



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In this tutorial you have

• Created a matrix;

• Calculated the determinant of the matrix;

• Substituted values in the matrix; and

• Inverted the matrix.

5.2 HOW TO

5.2.1 Create a matrix

You create a matrix using the sympy.Matrix tool. Combine this with nested square brackets
[] so that every row is also inside square brackets.

Usage

1 sympy.Matrix([values])

For example, the following creates the matrix:

B =




1 2 3 4
5 6 7 8
9 10 11 12




Jupyter input

1 import sympy as sym
2

3 B = sym.Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
4 B




1 2 3 4
5 6 7 8
9 10 11 12




It is possible to write the code in a more readable way as long as an incomplete line
ends with an open bracket:
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Jupyter input

1 B = sym.Matrix(
2 [
3 [1, 2, 3, 4],
4 [5, 6, 7, 8],
5 [9, 10, 11, 12],
6 ]
7 )

5.2.2 Calculate the determinant of a matrix

To calculate the determinant of a matrix, use the .det tool.

Usage

1 matrix = sympy.Matrix([values])
2 matrix.det()

For example, the determinant of the following matrix:(
1 5
5 1

)

Jupyter input

1 matrix = sym.Matrix([[1, 5], [5, 1]])
2 matrix.det()

−24

5.2.3 Calculate the inverse of a matrix

To calculate the inverse of a matrix, use the .inv tool.

Usage

1 matrix = sympy.Matrix([values])
2 matrix.inv()

For example, to calculate the inverse of:(
1/2 1
5 0

)
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Jupyter input

1 matrix = sym.Matrix([[sym.S(1) / 2, 1], [5, 0]])
2 matrix.inv()

[
0 1

5
1 − 1

10

]

5.2.4 Multiply matrices by a scalar

To multiple a matrix by a scalar use the * operator. For example, to multiply the following
matrix by 6:

(
1/5 1
1 1

)

Jupyter input

1 matrix = sym.Matrix([[sym.S(1) / 5, 1], [1, 1]])
2 6 * matrix

[ 6
5 6
6 6

]

5.2.5 Add matrices together

To add matrices use the + operator. For example to compute:
(

1/5 1
1 1

)
+

(
4/5 0
0 0

)

Jupyter input

1 matrix = sym.Matrix([[sym.S(1) / 5, 1], [1, 1]])
2 other_matrix = sym.Matrix([[sym.S(4) / 5, 0], [0, 0]])
3 matrix + other_matrix

[
1 1
1 1

]



62 ■ Python for Mathematics

5.2.6 Multiply matrices together

To multiply matrices together you use the @ operator. For example, to compute:


1/5 1
1 1

 
4/5 0
0 0



Jupyter input

1 matrix @ other_matrix

 4
25 0
4
5 0



5.2.7 Create a vector

A vector is essentially a matrix with a single row or column. For example, to create the
vector:




3
2
1




Jupyter input

1 vector = sym.Matrix([[3], [2], [1]])
2 vector




3
2
1




5.2.8 Solve a linear system

To solve a given linear system that can be represented in matrix form, create the corre-
sponding matrix and vector and the matrix. For example, to solve the following equations:

x + 2y = 3
3x + y + 2z = 4
−y + z = 1
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Jupyter input

1 A = sym.Matrix([[1, 2, 0], [3, 1, 2], [0, -1, 1]])
2 b = sym.Matrix([[3], [4], [1]])
3 A.inv() @ b




− 5
37

310
3




5.3 EXERCISES

1. Obtain the determinant and the inverse of the following matrices:

(a) A =


1/5 1
1 1



(b) B =




1/5 1 5
3 1 6
1 2 1




(c) C =




1/5 5 5
3 1 7
a b c




2. Compute the following:

(a) 500


1/5 1
1 1



(b) π


1/π 2π
3/π 1



(c) 500


1/5 1
1 1


+ π


1/π 2π
3/π 1



(d) 500


1/5 1
1 1

 
1/π 2π
3/π 1



3. The matrix A is given by A =




a 4 2
1 a 0
1 2 1


.

(a) Find the determinant of A

(b) Hence find the values of a for which A is singular.
(c) State, giving a brief reason in each case, whether the simultaneous equations

ax + 4y + 2z = 3a
x + ay = 1
x + 2y + z = 3

have any solutions when:
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i. a = 3
ii. a = 2

4. The matrix D is given by D =




a 2 0
3 1 2
0 −1 1


 where a ̸= 2.

(a) Find D−1.
(b) Hence or otherwise, solve the equations:

ax + 2y = 3
3x + y + 2z = 4
−y + z = 1

5.4 FURTHER INFORMATION

5.4.1 Why does this book not discuss commenting of code?

In Python it is possible to write statements that are ignored using the # symbol. This creates
something called a “comment”. For example:

Jupyter input

1 import sympy as sym # Importing the sympy library using an alias

Comments like these often do not add to the readability of the code. In fact they can
make the code less readable or at worse confusing [4].

In this section of the book there is in fact no need for comments like this as you are
mainly using tools that are well-documented. Furthermore when using Jupyter notebooks
you can add far more to the readability of the code by adding prose alongside our code
instead of using small brief inline comments.

This does not mean that readability of code is not important.

Being able to read and understand written code is important.

In Chapter 12, you will start to write functions and emphasis will be given there on read-
ability and documenting (as opposed to commenting) the code written. A specific discussion
about using a tool called a docstring as opposed to a comment will be covered.

In Chapters 15 and 17, there is more information on how to ensure code is readable and
understandable.

5.4.2 Why use @ for matrix multiplication and not *?

With sympy it is in fact possible to use the * operator for matrix multiplication:
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Jupyter input

1 import sympy as sym
2

3 matrix = sym.Matrix([[sym.S(1) / 5, 1], [1, 1]])
4 other_matrix = sym.Matrix([[sym.S(4) / 5, 0], [0, 0]])
5 matrix * other_matrix

[ 4
25 0
4
5 0

]

However, there are other libraries that can be used for linear algebra and in those libraries
the * does not do matrix multiplication, it does element-wise multiplication instead. So for
clarity it is preferred to use @ throughout.

5.4.3 Is Numpy a library that can be used for linear algebra?

numpy is one of the most popular and important libraries in the Python ecosystem. It is
in fact the best library to use when doing linear algebra as it is computationally efficient,
however, it cannot handle symbolic variables which is why you are seeing how to use Sympy
here. An introduction to numpy is covered in a chapter of the online version of the book.



C H A P T E R 6

Combinatorics

Combinatorics is the mathematical area interested in specific finite sets. In a lot of instances
this comes down to counting things and is often first encountered by mathematicians through
combinations and permutations. Computers are useful when doing this as they can be used
to generate the finite sets considered. You can essentially count things “by hand” (using a
computer) to confirm theoretic results.

In this chapter you will cover:

• Generating configurations of elements that correspond to permutations and/or
combinations.

• Counting these configurations.

• Directly computing nCi =
(

n
i

)
.

• Directly computing nPi.

6.1 TUTORIAL

You will solve the following problem using a computer to illustrate how a computer can be
used to solve combinatorial problems:

The digits 1, 2, 3, 4, and 5 are arranged in random order, to form a five-digit number.

1. How many different five-digit numbers can be formed?

2. How many different five-digit numbers are:

(a) Odd
(b) Less than 23000

Firstly you are going to get the 5 digits. Python has a tool for this called range which
directly gives the integers from a given bound to another:

Jupyter input

1 digits = range(1, 6)
2 digits
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range(1, 6)

At present that is only the instructions for generating the integers from 1 to 5 (the 6 is
a strict upper bound). You can transform this to a tuple, using the tuple tool:

Jupyter input

1 tuple(range(1, 6))

(1, 2, 3, 4, 5)

The question is asking for all the permutations of size 5 of that set. The main tool for
this is a library specifically designed to iterate over objects in different ways: itertools.

Jupyter input

1 import itertools
2

3 permutations = itertools.permutations(digits)
4 permutations

<itertools.permutations at 0x103a548b0>

That is again only the set of instructions, to view the actual permutations you will
transform this into a tuple. You will overwrite the value of permutations to not be the
instructions but the actual tuple of all the permutations:

Jupyter input

1 permutations = tuple(permutations)
2 permutations

((1, 2, 3, 4, 5),
(1, 2, 3, 5, 4),
(1, 2, 4, 3, 5),
(1, 2, 4, 5, 3),
...
(5, 4, 2, 3, 1),
(5, 4, 3, 1, 2),
(5, 4, 3, 2, 1))

Now to answer the question you need to find out how many tuples are in that tuple.
You do this using the Python len tool which returns the length of something:
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Jupyter input

1 len(permutations)

120

You can confirm this to be correct as you know that there are 5! ways of arranging those
numbers. The math library has a factorial tool:

Jupyter input

1 import math
2

3 math.factorial(5)

120

In order to find out how many 5 digit numbers are odd you are going to compute the
following sum:

∑
π∈Π

π5 mod 2

Where Π is the set of permutations and π5 denotes the 5th (and last) element of the
permutation. So for example, if the first element of Π was (1, 2, 3, 4, 5) then π5 = 5 and
5 mod 2 = 1. To do this, you use the sum tool in python coupled with the expressions for
and in. You also access the 5th element of a given permutation using [4] (the first element
is indexed by 0, so the 5th is indexed by 4):

Jupyter input

1 sum(permutation[4] % 2 for permutation in permutations)

72

You can again check this theoretically, there are three valid choices for the last digit of
a given tuple to be odd: 1, 3 and 5. For each of those, there are then four choices for the
remaining digits:

Jupyter input

1 math.factorial(4) * 3

72
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To compute the number of digits that are less than or equal to 23000 you compute a
similar sum except you use the <= operator and also convert the tuple of digits to a number
in base 10:

(π1, π2, π3, π4, π5) → π1104 + π2103 + π3102 + π410 + π5

Thus you are going to compute the following sum:
∑

π∈Π if π1104+π2103+π3102+π410+π5≤23000

1

Jupyter input

1 sum(
2 1
3 for permutation in permutations
4 if permutation[0] * 10 ** 4
5 + permutation[1] * 10 ** 3
6 + permutation[2] * 10 ** 2
7 + permutation[3] * 10
8 + permutation[4]
9 <= 23000

10 )

30

You can again confirm this theoretically, for a given tuple to be less than 23000 that is
only possible if the first digit is 1 or 2:

• If it is 1, then any of the other 4! permutations of the other digits is valid;

• If it is 2, then the second digit must be 1 and any of the other 3! permutations of the
other digits is valid.

Jupyter input

1 (math.factorial(4) + math.factorial(3))

30

In this tutorial you have

• Created permutations of a given tuples;

• Created permutations of a given tuples that obey a given condition;

• Counted how many permutations exist; and

• Directly computed the expected number of permutations.
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6.2 HOW TO

6.2.1 Create a tuple

To create a tuple which is an ordered collection of objects that cannot be changed, use the
() brackets.

Usage

1 collection = (value_1, value_2, value_3, ..., value_n)

For example:

Jupyter input

1 basket = ("Bread", "Biscuits", "Coffee")
2 basket

('Bread', 'Biscuits', 'Coffee')

6.2.2 How to access particular elements in a tuple

If you need to you can access elements of a collection using [] brackets. The first element
has index 0:

Usage

1 tuple[index]

For example:

Jupyter input

1 basket[1]

'Biscuits'

6.2.3 Create boolean variables

A boolean variable has one of two values: True or False.
To create a boolean variable here are some of the things you can use:

• Equality: value == other value

• Inequality value != other value

• Strictly less than value < other value
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• Less than or equal value <= other value

• Inclusion value in iterable

This a subset of the operators available. For example:

Jupyter input

1 value = 5
2 other_value = 10
3

4 value == other_value

False

Jupyter input

1 value != other_value

True

Jupyter input

1 value <= other_value

True

Jupyter input

1 value < value

False

Jupyter input

1 value <= value

True

Jupyter input

1 value in (1, 2, 4, 19)
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False

It is also possible to combine booleans to create new booleans:

• And: first boolean and second boolean

• Or: first boolean or second boolean

• No: not boolean

Jupyter input

1 True and True

True

Jupyter input

1 False and True

False

Jupyter input

1 True or False

True

Jupyter input

1 False or False

False

Jupyter input

1 not True

False
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Jupyter input

1 not False

True

6.2.4 Create an iterable with a given number of items

The range tool gives a given number of integers.

Usage

1 range(number_of_integers)

For example:

Jupyter input

1 tuple(range(10))

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

range(N) gives the integers from 0 until N − 1 (inclusive).
It is also possible to pass two values as inputs so that you have a different lower bound:

Usage

1 tuple(range(4, 10))

(4, 5, 6, 7, 8, 9)

It is also possible to pass a third value as a step size:

Jupyter input

1 tuple(range(4, 10, 3))

(4, 7)

6.2.5 Create permutations of a given set of elements

The python itertools library has a permutations tool that will generate all permutations
of a given set.
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Usage

1 itertools.permutations(iterable)

Jupyter input

1 import itertools
2

3 basket = ("Bread", "Biscuits", "Coffee")
4 tuple(itertools.permutations(basket))

(('Bread', 'Biscuits', 'Coffee'),
('Bread', 'Coffee', 'Biscuits'),
('Biscuits', 'Bread', 'Coffee'),
('Biscuits', 'Coffee', 'Bread'),
('Coffee', 'Bread', 'Biscuits'),
('Coffee', 'Biscuits', 'Bread'))

It is possible to limit the size to only be permutations of size r:

Jupyter input

1 tuple(itertools.permutations(basket, r=2))

(('Bread', 'Biscuits'),
('Bread', 'Coffee'),
('Biscuits', 'Bread'),
('Biscuits', 'Coffee'),
('Coffee', 'Bread'),
('Coffee', 'Biscuits'))

6.2.6 Create combinations of a given set of elements

The python itertools library has a combinations tool that will generate all combinations
of size r of a given set:

Usage

1 itertools.combinations(iterable, r)

For example:
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Jupyter input

1 basket = ("Bread", "Biscuits", "Coffee")
2 tuple(itertools.combinations(basket, r=2))

(('Bread', 'Biscuits'), ('Bread', 'Coffee'), ('Biscuits', 'Coffee'))

A combination does not care about order so by default the combinations generated are
sorted.

6.2.7 Summing items in an iterable

You can compute the sum of items in an iterable using the sum tool:

Jupyter input

1 sum((1, 2, 3))

6

You can also directly use the sum without specifically creating the iterable. This corre-
sponds to the following mathematical notation:

∑
s∈S

f(s)

and is done using the following:

Jupyter input

1 sum(f(object) for object in old_list)

Here is an example of calculating the following sum:
10∑

n=0
n2

Jupyter input

1 sum(n ** 2 for n in range(11))

385

You can compute conditional sums by only summing over elements that meet a given
condition using the following:
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Usage

1 sum(f(object) for object in old_list if condition)

Here is an example of calculating the following sum:

10∑

n = 0
if n odd

n2

Jupyter input

1 sum(n ** 2 for n in range(11) if n % 2 == 1)

165

6.2.8 Directly compute n!
The math library has a factorial tool.

Usage

1 math.factorial(N)

Jupyter input

1 import math
2

3 math.factorial(5)

120

6.2.9 Directly compute
(n

i

)

The scipy.special library has a comb tool.

Usage

1 scipy.special.comb(n, i)

For example:
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Jupyter input

1 import scipy.special
2

3 scipy.special.comb(3, 2)

3.0

6.2.10 Directly compute nPi

The scipy.special library has a perm tool.

Usage

1 scipy.special.perm(n, i)

For example:

Jupyter input

1 scipy.special.perm(3, 2)

6.0

6.3 EXERCISES

1. Obtain the following tuples using the range command:

(a) (0, 1, 2, 3, 4, 5)
(b) (2, 3, 4, 5)
(c) (2, 4, 6, 8)
(d) −1, 2, 5, 8

2. By both generating and directly computing obtain the number of the following:

(a) All permutations of (0, 1, 2, 3, 4, 5).
(b) All permutations of (A, B, C).
(c) Permutations of size 3 of (0, 1, 2, 3, 4, 5).
(d) Permutations of size 2 of (0, 1, 2, 3, 4, 5, 6).
(e) Combinations of size 3 of (0, 1, 2, 3, 4, 5).
(f) Combinations of size 2 of (0, 1, 2, 3, 4, 5).
(g) Combinations of size 5 of (0, 1, 2, 3, 4, 5).

3. A class consists of 3 students from Ashville and 4 from Bewton. A committee of 5
students is chosen at random from the class.
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(a) Find the number of committees that include 2 students from Ashville and 3 from
Bewton are chosen.

(b) In fact, 2 students from Ashville and 3 from Bewton are chosen. In order to watch
a video, all 5 committee members sit in a row. In how many different orders can
they sit if no 2 students from Bewton sit next to each other.

4. Three letters are selected at random from the 8 letters of the word COMPUTER, without
regard to order.

(a) Find the number of possible selections of 3 letters.
(b) Find the number of selections of 3 letters with the letter P.
(c) Find the number of selections of 3 letters where the 3 letters form the word TOP.

6.4 FURTHER INFORMATION

6.4.1 Are there other ways to access elements in tuples?

You have seen in this chapter how to access a single element in a tuple. There are various
ways of indexing tuples:

1. Indexing (seen in Section 6.2.2).

2. Negative indexing (see Section 12.2.13)

3. Slicing (see Section 12.2.14)

6.4.2 Why do range, itertools.permutations, and itertools.combinations not
directly give the elements?

When you run either of the three range, itertools.permutations or itertools.combinations
tools, this is an example of creating a generator. This allows the creation of the instructions
to build something without building it.

In practice this means that you can create large sets without needing to generate them
until required.

6.4.3 How does the summation notation
∑

correspond to the code?

The sum command corresponds to the mathematical
∑

notation. Here are a few examples
showing the sum command, the

∑
notation but also the prose describing:

• The sum of the square of the integers from 1 to 100 (inclusive):

100∑
i=1

i2

Given by:

Jupyter input

1 sum(i ** 2 for i in range(1, 101))
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338350

• The sum of the square of the integers from 1 to 100 (inclusive) if they are
prime:

100∑

i = 1
if i is prime

i2

Given by:

Jupyter input

1 sum(i ** 2 for i in range(1, 101) if sym.isprime(i))

65796

• The sum of the square of the elements in the collection S if they are prime:
∑

i ∈ S
if i is prime

i2

Given by:

Jupyter input

1 S = (1, 3, 9, 12, 21, 5, 2, 2)
2 sum(i ** 2 for i in S if sym.isprime(i))

42
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Probability

Probability is the study of random events. Computers are particularly helpful here as they
can be used to carry out a number of experiments to confirm and/or explore theoretic
results.

In practice studying probability will often involve measuring:

• expected chances of an event occurring and

• the conditional chances of an event occurring given another event occurring.

Here you will see how to instruct a computer to sample such events.

In this chapter you will cover:

• Generating random numbers.

• Randomly sampling from a given collection of items.

• Write python functions to be able to repeat experiments.

7.1 TUTORIAL

You will solve the following problem using a computer to estimate the expected probabilities:
An experiment consists of selecting a token from a bag and spinning a coin. The bag

contains 5 red tokens and 7 blue tokens. A token is selected at random from the bag, its
colour is noted and then the token is returned to the bag.

When a red token is selected, a biased coin with probability 2
3 of landing heads is spun.

When a blue token is selected a fair coin is spun.

1. What is the probability of picking a red token?

2. What is the probability of obtaining Heads?

3. If a heads is obtained, what is the probability of having selected a red token.

You will use the random library from the Python standard library to do this. First start
off by building a Python tuple to represent the bag with the tokens. Assign this to a variable
bag:
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Jupyter input

1 bag = (
2 "Red",
3 "Red",
4 "Red",
5 "Red",
6 "Red",
7 "Blue",
8 "Blue",
9 "Blue",

10 "Blue",
11 "Blue",
12 "Blue",
13 "Blue",
14 )
15 bag

('Red',
'Red',
'Red',
'Red',
'Red',
'Blue',
'Blue',
'Blue',
'Blue',
'Blue',
'Blue',
'Blue')

You are using the circular brackets () and the quotation marks ". Those are important
and cannot be omitted. The choice of brackets () as opposed to {} or [] is important
as it instructs Python to do different things. You can use " or ’ interchangeably.

Instead of writing every copy of colour you can create a Python list which allows you
to carry out some basic algebra on the items:

• Create a list with 5 "Red"s.

• Create a list with 7 "Blue"s.

• Combine both lists:

Jupyter input

1 bag = ["Red"] * 5 + ["Blue"] * 7
2 bag
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['Red',
'Red',
'Red',
'Red',
'Red',
'Blue',
'Blue',
'Blue',
'Blue',
'Blue',
'Blue',
'Blue']

Now to sample from that use the random library which has a choice command:

Jupyter input

1 import random
2

3 random.choice(bag)

'Blue'

If you run this many times, you will not always get the same outcome:

Jupyter input

1 random.choice(bag)

Jupyter input

1 'Blue'

The bag variable is unchanged:

Jupyter input

1 bag
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Jupyter input

1 ['Red',
2 'Red',
3 'Red',
4 'Red',
5 'Red',
6 'Blue',
7 'Blue',
8 'Blue',
9 'Blue',

10 'Blue',
11 'Blue',
12 'Blue']

In order to answer the first question (what is the probability of picking a red token)
repeat this many times: Do this by defining a Python function (which is akin to a mathe-
matical function) that makes repeating code possible:

Jupyter input

1 def pick_a_token(container):
2 """
3 A function to randomly sample from a `container`.
4 """
5 return random.choice(container)

You can then call this function, passing bag to it as the container from which to pick:

Jupyter input

1 pick_a_token(container=bag)

'Blue'

Jupyter input

1 pick_a_token(container=bag)

'Red'

In order to measure the probability of picking a red token repeat this not once or twice
but tens of thousands of times. You will do this using something called a “list comprehen-
sion” which is akin to the mathematical notation commonly used to create sets:
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S1 = {f(x) for x in S2}

Jupyter input

1 number_of_repetitions = 10000
2 samples = [pick_a_token(container=bag) for repetition in

range(number_of_repetitions)]↪→

3 samples

Jupyter input

1 ['Red',
2 'Red',
3 'Red',
4 ...
5 'Blue',
6 'Blue',
7 'Red',
8 'Blue',
9 ]

You can confirm that you have the correct number of samples:

Jupyter input

1 len(samples)

10000

len is the Python tool to get the length of a given Python iterable.

Using this you can now use == (double =) to check how many of those samples are Red:

Jupyter input

1 sum(token == "Red" for token in samples) / number_of_repetitions

0.4071

You have sampled a probability of around .41. The theoretic value is 5
5+7 :



Probability ■ 85

Jupyter input

1 5 / (5 + 7)

0.4166666666666667

To answer the second question (What is the probability of obtaining Heads?). You need
to make use of another Python tool: an if statement. This will let you write a function
that does precisely what is described in the problem:

• Choose a token;

• Set the probability of flipping a given coin; and

• Select that coin.

For the second random selection (flipping a coin) you will not choose from a list but
instead select a random number between 0 and 1.

Jupyter input

1 def sample_experiment(bag):
2 """
3 This samples a token from a given bag and then
4 selects a coin with a given probability.
5

6 If the sampled token is red then the probability
7 of selecting heads is 2/3 otherwise it is 1/2.
8

9 This function returns both the selected token
10 and the coin face.
11 """
12 selected_token = pick_a_token(container=bag)
13

14 if selected_token == "Red":
15 probability_of_selecting_heads = 2 / 3
16 else:
17 probability_of_selecting_heads = 1 / 2
18

19 if random.random() < probability_of_selecting_heads:
20 coin = "Heads"
21 else:
22 coin = "Tails"
23 return selected_token, coin

Using this you can sample according to the problem description:
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Jupyter input

1 sample_experiment(bag=bag)

('Red', 'Heads')

Jupyter input

1 sample_experiment(bag=bag)

('Red', 'Tails')

You can now find out the probability of selecting heads by carrying out a large number
of repetitions and checking which ones have a coin that is heads:

Jupyter input

1 samples = [sample_experiment(bag=bag) for repetition in
range(number_of_repetitions)]↪→

2 sum(coin == "Heads" for token, coin in samples) / number_of_repetitions

0.576

You can compute this theoretically as well, the expected probability is:

Jupyter input

1 import sympy as sym
2

3 sym.S(5) / (12) * sym.S(2) / 3 + sym.S(7) / (12) * sym.S(1) / 2

41
72

Jupyter input

1 41 / 72

0.5694444444444444

You can also use the samples to calculate the conditional probability that a token was
read if the coin is heads. This is done again using the list comprehension notation but
including an if statement which emulates the mathematical notation:

S3 = {x ∈ S1| if some property of x holds}
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Jupyter input

1 samples_with_heads = [(token, coin) for token, coin in samples if coin
== "Heads"]↪→

2 sum(token == "Red" for token, coin in samples_with_heads) /
len(samples_with_heads)↪→

0.49236111111111114

This is given theoretically by:

P (Red|Heads) = P (Heads|Red)P (Red)
P (Heads)

Jupyter input

1 (sym.S(2) / 3 * sym.S(5) / 12) / (sym.S(41) / 72)

20
41

Jupyter input

1 20 / 41

0.4878048780487805

In this tutorial you have

• Randomly sampled from an iterable.

• Randomly sampled a number between 0 and 1.

• Written a function to represent a random experiment.

• Created a list using list comprehensions.

• Counted outcomes of random experiments.

7.2 HOW TO

7.2.1 Create a list

To create a list which is an ordered collection of objects that can be changed use the []
brackets.
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Usage

1 collection = [value_1, value_2, value_3, ..., value_n]

For example:

Jupyter input

1 basket = ["Bread", "Biscuits", "Coffee"]
2 basket

['Bread', 'Biscuits', 'Coffee']

You can insert an element to the end of a list by appending to it:

Jupyter input

1 basket.append("Tea")
2 basket

['Bread', 'Biscuits', 'Coffee', 'Tea']

You can also combine lists together:

Jupyter input

1 other_basket = ["Toothpaste"]
2 basket = basket + other_basket
3 basket

Jupyter input

1 ['Bread', 'Biscuits', 'Coffee', 'Tea', 'Toothpaste']

As for tuples you can also access elements using their indices:

Jupyter input

1 basket[3]
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Jupyter input

1 'Tea'

7.2.2 Define a function

Define a function using the def keyword (short for define):

Usage

1 def name(variable1, variable2, ...):
2 """
3 A docstring between triple quotation to describe what is happening
4 """
5 INDENTED BLOCK OF CODE
6 return output

For example, define f : R → R given by f(x) = x3 using the following:

Jupyter input

1 def x_cubed(x):
2 """
3 A function to return x ˆ 3
4 """
5 return x ** 3

It is important to include the docstring as this allows us to make sure our code is clear.
You can access that docstring using help:

Jupyter input

1 help(x_cubed)

Help on function x_cubed in module __main__:

x_cubed(x)
A function to return x ˆ 3

7.2.3 Call a function

Once a function is defined call it using the ():
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Usage

1 name(variable1, variable2, ...)

For example:

Jupyter input

1 x_cubed(2)

8

Jupyter input

1 x_cubed(5)

125

Jupyter input

1 import sympy as sym
2

3 x = sym.Symbol("x")
4 x_cubed(x)

x3

7.2.4 Run code based on a condition

To run code depending on whether or not a particular condition is met use an if statement.

if condition:
INDENTED BLOCK OF CODE TO RUN IF CONDITION IS TRUE

else:
OTHER INDENTED BLOCK OF CODE TO RUN IF CONDITION IS NOT TRUE

These if statements are most useful when combined with functions. For example, you
can define the following function:

f(x) =
{

x3 if x < 0
x2 otherwise
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Jupyter input

1 def f(x):
2 """
3 A function that returns x ˆ 3 if x is negative.
4 Otherwise it returns x ˆ 2.
5 """
6 if x < 0:
7 return x ** 3
8 return x ** 2

Jupyter input

1 f(0)

0

Jupyter input

1 f(-1)

-1

Jupyter input

1 f(3)

9

Here is another example of a function that returns the price of a given item, if the item
is not specific in the function then the price is 0:

Jupyter input

1 def get_price_of_item(item):
2 """
3 Returns the price of an item:
4

5 - 'Bread': 2
6 - 'Biscuits': 3
7 - 'Coffee': 1.80
8 - 'Tea': .50
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9 - 'Toothpaste': 3.50
10

11 Other items will give a price of 0.
12 """
13 if item == "Bread":
14 return 2
15 if item == "Biscuits":
16 return 3
17 if item == "Coffee":
18 return 1.80
19 if item == "Tea":
20 return 0.50
21 if item == "Toothpaste":
22 return 3.50
23 return 0

Jupyter input

1 get_price_of_item("Toothpaste")

3.5

Jupyter input

1 get_price_of_item("Biscuits")

3

Jupyter input

1 get_price_of_item("Rollerblades")

0

7.2.5 Create a list using a list comprehension

You can create a new list from an old list using a list comprehension.

Usage

1 collection = [f(item) for item in iterable]
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This corresponds to building a set from another set in the usual mathematical notation:

S2 = {f(x) for x in S1}

If f(x) = x − 5 and S1 = {2, 5, 10}, then you would have:

S2 = {−3, 0, 5}

In Python this is done as follows:

Jupyter input

1 new_list = [object for object in old_list]

Jupyter input

1 s_1 = [2, 5, 10]
2 s_2 = [x - 5 for x in s_1]
3 s_2

[-3, 0, 5]

You can combine this with functions to write succinct efficient code.
For example, you can compute the price of a basket of goods using the following:

Jupyter input

1 basket = ["Tea", "Tea", "Toothpaste", "Bread"]
2 prices = [get_price_of_item(item) for item in basket]
3 prices

[0.5, 0.5, 3.5, 2]

7.2.6 Summing items in a list

You can compute the sum of items in a list using the sum tool:

Jupyter input

1 sum([1, 2, 3])

6

You can also directly use sum without specifically creating the list. This corresponds to
the following mathematical notation:



94 ■ Python for Mathematics

∑
s∈S

f(s)

and is done using the following:

Jupyter input

1 sum(f(object) for object in old_list)

This gives the same result as:

Jupyter input

1 sum([f(object) for object in old_list])

but it is more efficient. Here is an example of getting the total price of a basket of goods:

Jupyter input

1 basket = ["Tea", "Tea", "Toothpaste", "Bread"]
2 total_price = sum(get_price_of_item(item) for item in basket)
3 total_price

6.5

7.2.7 Sample from an iterable

To randomly sample from any collection of items use the random library and the choice
tool.

Usage

1 random.choice(collection)

Jupyter input

1 import random
2

3 basket = ["Tea", "Tea", "Toothpaste", "Bread"]
4 random.choice(basket)

'Toothpaste'
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7.2.8 Sample a random number

To sample a random number between 0 and 1 use the random library and the random tool.

Usage

1 random.random()

For example:

Jupyter input

1 import random
2

3 random.random()

0.7558634290782174

7.2.9 Reproduce random events

The random numbers processes generated by the Python random module are what are
called pseudo random which means that it is possible to get a computer to reproduce them
by seeding the random process.

Usage

1 random.seed(int)

Jupyter input

1 import random
2

3 random.seed(0)
4 random.random()

0.8444218515250481

Jupyter input

1 random.random()

0.7579544029403025
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Jupyter input

1 random.seed(0)
2 random.random()

0.8444218515250481

7.3 EXERCISES

1. For each of the following, write a function, and repeatedly use it to simulate the
probability of an event occurring with the following chances:

(a) 2
7

(b) 1
10

(c) 1
100

(d) 1

2. Write a function, and repeatedly use it to simulate the probability of selecting a red
token from each of the following configurations:

(a) A bag with 4 red tokens and 4 green tokens.
(b) A bag with 4 red tokens, 4 green tokens and 10 yellow tokens.
(c) A bag with 0 red tokens, 4 green tokens and 10 yellow tokens.

3. An experiment consists of selecting a token from a bag and spinning a coin. The bag
contains 3 red tokens and 4 blue tokens. A token is selected at random from the bag,
its colour is noted and then the token is returned to the bag.
When a red token is selected, a biased coin with probability 4

5 of landing heads is
spun.
When a blue token is selected, a biased coin with probability 2

5 of landing heads is
spun.

(a) Approximate the probability of picking a red token?
(b) Approximate the probability of obtaining Heads?
(c) If a heads is obtained, approximate the probability of having selected a red token.

4. On a randomly chose day, the probability of an individual travelling to school by car,
bicycle or on foot is 1/2, 1/6 and 1/3, respectively. The probability of being late when
using these methods of travel is 1/5, 2/5 and 1/10, respectively.

(a) Approximate the probability that an individual travels by foot and is late.
(b) Approximate the probability that an individual is not late.
(c) Given that an individual is late, approximate the probability that they did not

travel on foot.
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7.4 FURTHER INFORMATION

7.4.1 What is the difference between a Python list and a Python tuple?

Two of the most used Python iterables are lists and tuples. In practice they have a num-
ber of similarities, they are both ordered collections of objects that can be used in list
comprehensions as well as in other ways.

• Tuples are immutable

• Lists are mutable

This means that once created tuples cannot be changed and lists can.
As a general rule of thumb: if you do not need to modify your iterable then use a tuple

as they are more computationally efficient.

7.4.2 Why does the sum of booleans count the Trues?

In the tutorial and elsewhere you created a list of booleans and then took the sum. Here
are some of the steps:

Jupyter input

1 samples = ("Red", "Red", "Blue")

Jupyter input

1 booleans = [sample == "Red" for sample in samples]
2 booleans

[True, True, False]

When you take the sum of that list you get a numeric value:

Jupyter input

1 sum(booleans)

2

This has in fact counted the True values as 1 and the False values as 0.

Jupyter input

1 int(True)

1
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Jupyter input

1 int(False)

0

7.4.3 What is the difference between print and return?

In functions you use the return statement. This does two things:

1. Assigns a value to the function run;

2. Ends the function.

The print statement only displays the output.
As an example create the following set:

S = {f(x) for x ∈ {0, π/4, π/2, 3π/4}}

where f(x) = cos2(x).
The correct way to do this is:

Jupyter input

1 import sympy as sym
2

3

4 def f(x):
5 """
6 Return the square of the cosine of x
7 """
8 return sym.cos(x) ** 2
9

10

11 S = [f(x) for x in (0, sym.pi / 4, sym.pi / 2, 3 * sym.pi / 4)]
12 S

[1, 1/2, 0, 1/2]

If you replaced the return statement in the function definition with a print you obtain:
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Jupyter input

1 def f(x):
2 """
3 Return the square of the cosine of x
4 """
5 print(sym.cos(x) ** 2)
6

7

8 S = [f(x) for x in (0, sym.pi / 4, sym.pi / 2, 3 * sym.pi / 4)]

1
1/2
0
1/2

The function has been run and it displays the output.
However, if you look at what S is, you see that the function has not returned anything:

Jupyter input

1 S

[None, None, None, None]

7.4.4 How does Python sample randomness?

When using the Python random module, you are in fact generating a pseudo random process.
True randomness is actually not common.

Pseudo randomness is an important area of mathematics as strong algorithms that create
unpredictable sequences of numbers are vital to cryptographic security.

The specific algorithm used in Python for randomness is called the Mersenne twister
algorithm and is state of the art.

7.4.5 What is the difference between a docstring and a comment

In Python it is possible to write statements that are ignored using the # symbol. This creates
something called a “comment”. For example:

Jupyter input

1 # create a list to represent the tokens in a bag
2 bag = ["Red", "Red", "Blue"]

A docstring however is something that is “attached” to a function and can be accessed
by Python. If you rewrite the function to sample the experiment of the tutorial without a
docstring but using comments you will have:
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Jupyter input

1 def sample_experiment(bag):
2 # Select a token
3 selected_token = pick_a_token(container=bag)
4

5 # If the token is red then the probability of selecting heads is 2/3
6 if selected_token == "Red":
7 probability_of_selecting_heads = 2 / 3
8 # Otherwise it is 1 / 2
9 else:

10 probability_of_selecting_heads = 1 / 2
11

12 # Select a coin according to the probability.
13 if random.random() < probability_of_selecting_heads:
14 coin = "Heads"
15 else:
16 coin = "Tails"
17

18 # Return both the selected token and the coin.
19 return selected_token, coin

Now if you try to access the help for the function you will not get it:

Jupyter input

1 help(sample_experiment)

Help on function sample_experiment in module __main__:

sample_experiment(bag)

Furthermore, if you look at the code with comments you will see that because of the
choice of variable names the comments are in fact redundant.

In software engineering it is generally accepted that comments indicate that your code
is not clear and so it is preferable to write clear documentation explaining why something
is done through docstrings.

Jupyter input

1 def sample_experiment(bag):
2 """
3 This samples a token from a given bag and then
4 selects a coin with a given probability.
5

6 If the sampled token is red then the probability
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7 of selecting heads is 2/3 otherwise it is 1/2.
8

9 This function returns both the selected token
10 and the coin face.
11 """
12 selected_token = pick_a_token(container=bag)
13

14 if selected_token == "Red":
15 probability_of_selecting_heads = 2 / 3
16 else:
17 probability_of_selecting_heads = 1 / 2
18

19 if random.random() < probability_of_selecting_heads:
20 coin = "Heads"
21 else:
22 coin = "Tails"
23 return selected_token, coin
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Sequences

The formal definition of sequences is a collection of ordered objects with potential rep-
etitions. The study of these sequences leads to many interesting results. Here you will
concentrate on using recursive definitions to generate the values in a sequence.

In this chapter you will cover:

• Using recursion .

8.1 TUTORIAL

You will solve the following problem using a computer a programming technique called
recursion.

A sequence a1, a2, a3, . . . is defined by:
{

a1 = k,
an+1 = 2an–7, n ≥ 1,

where k is a constant.

1. Write down an expression for a2 in terms of k.

2. Show that a3 = 4k − 21

3. Given that
∑4

r=1 ar = 43 find the value of k.

You will use Python to define a function that reproduces the mathematical definition of
ak:

Jupyter input

1 def generate_a(k_value, n):
2 """
3 Uses recursion to return a_n for a given value of k:
4

5 a_1 = k
6 a_n = 2a_{n-1} - 7
7 """
8 if n == 1:

102 DOI: 10.1201/9781003451860-8
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9 return k_value
10 return 2 * generate_a(k_value, n - 1) - 7

This is similar to the mathematical definition: the Python definition of the function
refers to itself.

You can use this to compute a3 for k = 4:

Jupyter input

1 generate_a(k_value=4, n=3)

-5

You can use this to compute a5 for k = 1:

Jupyter input

1 generate_a(k_value=1, n=5)

-89

Finally it is also possible to pass a symbolic value to k value. This allows you to answer
the first question:

Jupyter input

1 import sympy as sym
2

3 k = sym.Symbol("k")
4 generate_a(k_value=k, n=2)

2k − 7

Likewise for a3:

Jupyter input

1 generate_a(k_value=k, n=3)
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4k − 21

For the last question start by computing the sum:
4∑

r=1
ar

Jupyter input

1 sum_of_first_four_terms = sum(generate_a(k_value=k, n=r) for r in
range(1, 5))↪→

2 sum_of_first_four_terms

15k − 77

This allows you to create the given equation and solve it:

Jupyter input

1 equation = sym.Eq(sum_of_first_four_terms, 43)
2 sym.solveset(equation, k)

{8}

In this tutorial you have

• Defined a function using recursion.

• Called this function using both numeric and symbolic values.

8.2 HOW TO

8.2.1 Define a function using recursion

It is possible to define a recursive expression using a recursive function in Python. This
requires two things:

• A recursive rule: something that relates the current term to another one;

• A base case: a particular term that does not need the recursive rule to be calculated.

Consider the following mathematical expression:
{

a1 = 1,
an = 2an−1, n > 1,
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• The recursive rule is: an = 2an−1;

• The base case is: a1 = 1.

In Python this can be written as:

Jupyter input

1 def generate_sequence(n):
2 """
3 Generate the sequence defined by:
4

5 a_1 = 1
6 a_n = 2 a_{n - 1}
7

8 This is done using recursion.
9 """

10 if n == 1:
11 return 1
12 return 2 * generate_sequence(n - 1)

Here you can get the first seven terms:

Jupyter input

1 values_of_sequence = [generate_sequence(n) for n in range(1, 8)]
2 values_of_sequence

[1, 2, 4, 8, 16, 32, 64]

8.3 EXERCISES

1. Using recursion, obtain the first ten terms of the following sequences:

(a)


a1 = 1,
an = 3an−1, n > 1

(b)


b1 = 3,
bn = 6bn−1, n > 1

(c)


c1 = 3,
cn = 6cn−1 + 3, n > 1

(d)


d0 = 3,

dn =


dn−1 + 3, n > 0

2. Using recursion, obtain the first five terms of the sequence:




a0 = 0,
a1 = 1,
an = an−1 + an−2, n ≥ 2
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3. A 40-year building programme for new houses began in Oldtown in the year 1951
(Year 1) and finished in 1990 (Year 40).
The number of houses built each year form an arithmetic sequence with first term a
and common difference d.
Given that 2400 new houses were built in 1960 and 600 new houses were built in 1990,
find:

(a) The value of d.
(b) The value of a.
(c) The total number of houses built in Oldtown over 40 years.

4. A sequence is given by:
{

x1 = 1
xn+1 = xn(p + xn), n > 1

for p ̸= 0.

(a) Find x2 in terms of p.
(b) Show that x3 = 1 + 3p + 2p2.
(c) Given that x3 = 1, find the value of p

8.4 FURTHER INFORMATION

8.4.1 What are the differences between recursion and iteration?

When giving instructions to a computer it is possible to use recursion to directly implement
a common mathematical definition. For example consider the following sequence:

{
a1 = 1
an+1 = 3an, n > 1

You can define this in Python as follows:

Jupyter input

1 def generate_sequence(n):
2 """
3 Generate the sequence defined by:
4

5 a_1 = 1
6 a_n = 3 a_{n - 1}
7

8 This is done using recursion.
9 """

10 if n == 1:
11 return 1
12 return 3 * generate_sequence(n - 1)

The first six terms:
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Jupyter input

1 [generate_sequence(n) for n in range(1, 7)]

[1, 3, 9, 27, 81, 243]

In this case this corresponds to powers of 3, and indeed you can prove that: an = 3n−1.
The proof is not given here but one approach to doing it would be to use induction which
is closely related to recursive functions.

You can write a different python function that uses this formula. This is called iteration:

Jupyter input

1 def calculate_sequence(n):
2 """
3 Calculate the nth term of the sequence defined by:
4

5 a_1 = 1
6 a_n = 3 a_{n - 1}
7

8 This is done using iteration using the direct formula:
9

10 a_n = 3 ˆ n
11 """
12 return 3 ** (n - 1)

Jupyter input

1 [calculate_sequence(n) for n in range(1, 7)]

[1, 3, 9, 27, 81, 243]

You can in fact use a Jupyter command to time the run time of a command. It is clear
that recursion is slower.

Jupyter input

1 %timeit [generate_sequence(n) for n in range(1, 25)]

19.2 µs ± 246 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
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Jupyter input

1 %timeit [calculate_sequence(n) for n in range(1, 25)]

5.63 µs ± 44.7 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

In practice:

• Using recursion is powerful as it can be used to directly implement recursive defini-
tions.

• Using iteration is more computationally efficient but it is not always straightforward
to obtain an iterative formula.

8.4.2 What is caching?

One of the reasons that recursion is computationally inefficient is that it always has to
recalculate previously calculated values.

For example:
{

a1 = 1
an+1 = 3an, n > 1

One way to address this is by using caching, where a function stores the result of a
computation so that if it is called again with the same input, it can quickly retrieve the
stored value instead of recalculating it. Python has a caching tool available in the functools
library:

Jupyter input

1 import functools
2

3

4 def generate_sequence(n):
5 """
6 Generate the sequence defined by:
7

8 a_1 = 1
9 a_n = 3 a_{n - 1}

10

11 This is done using recursion.
12 """
13 if n == 1:
14 return 1
15 return 3 * generate_sequence(n - 1)
16

17

18 @functools.lru_cache()
19 def cached_generate_sequence(n):
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20 """
21 Generate the sequence defined by:
22

23 a_1 = 1
24 a_n = 3 a_{n - 1}
25

26 This is done using recursion but also includes a cache.
27 """
28 if n == 1:
29 return 1
30 return 3 * cached_generate_sequence(n - 1)

Timing both these approaches confirms a substantial increase in time for the cached
version.

Jupyter input

1 %timeit [generate_sequence(n) for n in range(1, 25)]

20.5 µs ± 381 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

Jupyter input

1 %timeit [cached_generate_sequence(n) for n in range(1, 25)]

934 ns ± 38.1 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)
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Statistics

Statistics is described as:

“Statistics is the discipline that concerns the collection, organization, analysis,
interpretation, and presentation of data.”

In practice this often means doing some form of analysis of data. This includes processes
like taking a mean of a collection of numerical values and checking if particular relationship
exists within the data.

In this chapter you will cover:

• Calculating measures of central tendency and spread;

• Calculating bivariate coefficients;

• Fitting a line of best fit; and

• Using the Normal distribution.

9.1 TUTORIAL

You will solve the following problem using a computer to do some of the more tedious
calculations.

Anna is investigating the relationship between exercise and resting heart rate. She takes
a random sample of 19 people in her year group and records for each person

• their resting heart rate, h beats per minute.

• the number of minutes, m, spent exercising each week.

Table 9.1 shows the data.
You can see a scatter plot in Figure 9.1.

1. For all collected values of h and m obtain:

• The mean
• The median
• The quartiles
• The standard deviation
• The variation

110 DOI: 10.1201/9781003451860-9
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TABLE 9.1 Data Showing Collected
Samples of Heart Rate (h) and Weekly
Minutes of Exercise (m)

h m

76.0 5
72.0 5
71.0 21
74.0 30
71.0 42
69.0 20
68.0 20
68.0 35
66 80.0
64 120.0
65 140.0
63 180.0
63 205.0
62 225.0
65 237.0
63 280.0
65 300.0
64 356.0
64 360.0
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Figure 9.1 A scatter plot of the data collected by Anna.
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• The maximum
• The minimum

2. Obtain the Pearson Coefficient of correlation for the variables h and m.

3. Obtain the line of best fit for variables x and y as defined by:

x = ln(m) y = ln(h)

4. Using the above obtain a relationship between m and h of the form:

h = cmk

Start by inputting all the data:

Jupyter input

1 h = (
2 76.0,
3 72.0,
4 71.0,
5 74.0,
6 71.0,
7 69.0,
8 68.0,
9 68.0,

10 66.0,
11 64.0,
12 65.0,
13 63.0,
14 63.0,
15 62.0,
16 65.0,
17 63.0,
18 65.0,
19 64.0,
20 64.0,
21 )
22 m = (
23 5,
24 5,
25 21,
26 30,
27 42,
28 20,
29 20,
30 35,
31 80,
32 120,
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33 140,
34 180,
35 205,
36 225,
37 237,
38 280,
39 300,
40 356,
41 360,
42 )

The main tool you are going to use for this problem is statistics.

Jupyter input

1 import statistics as st

To calculate the mean:

Jupyter input

1 st.mean(h)

67.0

Jupyter input

1 st.mean(m)

140.05263157894737

To calculate the median:

Jupyter input

1 st.median(h)

65.0
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Jupyter input

1 st.median(h)

120

To calculate the quartiles, use statistics.quantiles and specify that you want to
separate the data into n = 4 quarters.

Jupyter input

1 st.quantiles(h, n=4)

[64.0, 65.0, 71.0]

Jupyter input

1 st.quantiles(m, n=4)

[21.0, 120.0, 237.0]

Note that this calculation confirms the median which corresponds to the 50% quartile.
To calculate the sample standard deviation:

Jupyter input

1 st.stdev(h)

4.123105625617661

Jupyter input

1 st.stdev(m)

124.46662813970593

To calculate the sample variance:

Jupyter input

1 st.variance(h)

17.0
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Jupyter input

1 st.variance(m)

15491.941520467837

To compute the maximum:

Jupyter input

1 max(h)

76.0

Jupyter input

1 max(m)

360

To compute the minimum:

Jupyter input

1 min(h)

62.0

Jupyter input

1 min(m)

5

To compute the Pearson Coefficient of correlation use statistics.correlation:

Jupyter input

1 st.correlation(h, m)

-0.7686142969026402
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This negative value indicates a negative correlation between h and m, indicating that
the more you exercise the lower your heart rate is likely to be. To calculate the line of best
fit for the transformed variables you need to first create them. You will do this using a list
comprehension. As you are doing everything numerically, you will use math.log which by
default computes the natural logarithm.

Jupyter input

1 import math
2 x = [math.log(value) for value in m]
3 y = [math.log(value) for value in h]

Now to compute the line of best fit use statistics.linear regression:

Jupyter input

1 slope, intercept = st.linear_regression(x, y)

The slope is:

Jupyter input

1 slope

-0.03854770754231997

The intercept is:

Jupyter input

1 intercept

4.368415819445762

Recall the transformation of the variables:

x = ln(m) y = ln(h)

You now have the relationship:

y = ax + b

Where a corresponds to the slope and b corresponds to the intercept.
The question asks for a relationship between m and h of the form:

h = cmk

You can use sympy to manipulate the expressions:
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Jupyter input

1 import sympy as sym
2

3 h = sym.Symbol("h")
4 m = sym.Symbol("m")
5 a = sym.Symbol("a")
6 b = sym.Symbol("b")
7 x = sym.ln(m)
8 y = sym.ln(h)

A general expression for x and y can be expressed in terms of m and h:

Jupyter input

1 line = sym.Eq(lhs=y, rhs=a * x + b)
2 line

log (h) = a log (m) + b

Taking the exponential of both sides gives the required relationship:

Jupyter input

1 sym.exp(line.lhs)

h

Jupyter input

1 sym.expand(sym.exp(line.rhs))

ebea log (m)

Which can be rewritten as:

ebma

Substituting the values for the slope and intercept into these expressions gives the
required relationship:
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Jupyter input

1 sym.exp(line.rhs).subs({a: slope, b: intercept})

78.9185114479915
m0.03854770754232

Figure 9.2 is a plot that shows this relationship.
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Figure 9.2 A scatter plot of the data collected by Anne with the fitted relationship.

In this tutorial you have

• Calculated values of central tendency and spread;

• Calculated some bivariate coefficients;

• Fitted a line of best fit.

9.2 HOW TO

9.2.1 Calculate measures of spread and tendency

9.2.1.1 Calculate a mean

You can calculate the mean of a set of data using statistics.mean which takes an iterable.
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Usage

1 statistics.mean(data)

For example, to calculate the mean of (1, 5, 10, 12, 13, 20):

Jupyter input

1 import statistics as st
2

3 data = (1, 5, 10, 12, 13, 20)
4 st.mean(data)

10.166666666666666

9.2.1.2 Calculate a median

You can calculate the median of a set of data using statistics.median which takes an
iterable.

Usage

1 statistics.median(data)

For example, to calculate the median of (1, 5, 10, 12, 13, 20):

Jupyter input

1 import statistics as st
2

3 data = (1, 5, 10, 12, 13, 20)
4 st.median(data)

11.0

9.2.1.3 Calculate the population standard deviation

You can calculate the population standard deviation of a set of data using
statistics.pstdev which takes an iterable.

Usage

1 statistics.pstdev(data)
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For example, to calculate the population standard deviation of (1, 5, 10, 12, 13, 20):

Jupyter input

1 import statistics as st
2

3 data = (1, 5, 10, 12, 13, 20)
4 st.pstdev(data)

6.039223643997813

9.2.1.4 Calculate the sample standard deviation

You can calculate the sample standard deviation of a set of data using statistics.stdev
which takes an iterable.

Usage

1 statistics.stdev(data)

For example, to calculate the sample standard deviation of (1, 5, 10, 12, 13, 20):

Jupyter input

1 import statistics as st
2

3 data = (1, 5, 10, 12, 13, 20)
4 st.stdev(data)

6.6156380392723015

9.2.1.5 Calculate the population variance

You can calculate the population variance of a set of data using statistics.pvariance
which takes an iterable.

Usage

1 statistics.pvariance(data)

For example, to calculate the population variance of (1, 5, 10, 12, 13, 20):
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Jupyter input

1 import statistics as st
2

3 data = (1, 5, 10, 12, 13, 20)
4 st.pvariance(data)

36.47222222222222

9.2.1.6 Calculate the sample variance

You can calculate the sample variance of a set of data using statistics.variance which
takes an iterable.

Usage

1 statistics.variance(data)

For example, to calculate the sample variance of (1, 5, 10, 12, 13, 20):

Jupyter input

1 import statistics as st
2

3 data = (1, 5, 10, 12, 13, 20)
4 st.variance(data)

43.766666666666666

9.2.1.7 Calculate the maximum

You can calculate the maximum of a set of data using max which takes an iterable:

Usage

1 max(data)

For example, to calculate the maximum of (1, 5, 10, 12, 13, 20):

Jupyter input

1 data = (1, 5, 10, 12, 13, 20)
2 max(data)
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20

9.2.1.8 Calculate the minimum

You can calculate the minimum of a set of data use min which takes an iterable:

Usage

1 min(data)

For example, to calculate the minimum of (1, 5, 10, 12, 13, 20):

Jupyter input

1 data = (1, 5, 10, 12, 13, 20)
2 min(data)

1

9.2.1.9 Calculate quantiles

To calculate cut points dividing data into n intervals of equal probability you can use
statistics.quantiles which takes an iterable and a number of intervals.

Usage

1 statistics.quantiles(data, n)

For example, to calculate the cut points that divide (1, 5, 10, 12, 13, 20) into four intervals
of equal probability (in this case the quantiles are called quartiles):

Jupyter input

1 import statistics as st
2

3 data = (1, 5, 10, 12, 13, 20)
4 st.quantiles(data, n=4)

[4.0, 11.0, 14.75]

9.2.2 Calculate the sample covariance

To calculate the sample covariance of two data sets you can use statistics.covariance
which takes two iterables.
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Usage

1 statistics.covariance(first_data_set, second_data_set)

For example, to calculate the sample covariance of x = (1, 5, 10, 12, 13, 20) and y =
(3, −3, 6, −2, 1, 2):

Jupyter input

1 import statistics as st
2

3 x = (1, 5, 10, 12, 13, 20)
4 y = (3, -3, 6, -2, 1, 2)
5 st.covariance(x, y)

1.1666666666666674

9.2.3 Calculate the Pearson correlation coefficient

To calculate the correlation coefficient of two data sets you can use statistics.correlation
which takes two iterables.

Usage

1 statistics.correlation(first_data_set, second_data_set)

For example, to calculate the correlation coefficient of x = (1, 5, 10, 12, 13, 20) and y =
(3, −3, 6, −2, 1, 2):

Jupyter input

1 import statistics as st
2

3 x = (1, 5, 10, 12, 13, 20)
4 y = (3, -3, 6, -2, 1, 2)
5 st.correlation(x, y)

0.05325222181462787

9.2.4 Fit a line of best fit

To carry out linear regression to fit a line of best fit between two data sets you can use
statistics.linear regression which takes two iterables and returns a tuple with the slope
and the intercept of the line.
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Usage

1 statistics.linear_regression(first_data_set, second_data_set)

For example, to calculate the correlation coefficient of x = (1, 5, 10, 12, 13, 20) and y =
(−3, −14, −31, −6, −40, −70):

Jupyter input

1 import statistics as st
2

3 x = (1, 5, 10, 12, 13, 20)
4 y = (-3, -14, -31, -6, -40, -70)
5 st.linear_regression(x, y)

LinearRegression(slope=-3.2338156892612333, intercept=5.543792840822537)
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Data with fitted line: y= 3.23x+5.54

Figure 9.3 A line of best fit.

9.2.5 Create an instance of the normal distribution

A normal distribution with mean µ and standard deviation σ can be created using
statistics.NormalDist:
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Usage

1 statistics.NormalDist(mu, sigma)

For example, to create the normal distribution with µ = 3 and σ = .5:

Jupyter input

1 import statistics as st
2

3 distribution = st.NormalDist(mu=3, sigma=.5)
4 distribution

NormalDist(mu=3.0, sigma=0.5)

9.2.6 Use the cumulative distribution function of a normal distribution

For an instance of a normal distribution with mean µ and σ, the cumulative distribution
function which gives F (x) = P (X < x) (the probability that the normally distributed
random variable is less than X) can be accessed using statistics.NormaDist.cdf.

Usage

1 distribution = statistics.NormalDist(mu, sigma)
2 distribution.cdf(x)

For example, to find the probability that X < 2 for a normally distributed random
variable with µ = 3 and σ = .5:

Jupyter input

1 import statistics as st
2

3 distribution = st.NormalDist(mu=3, sigma=.5)
4 distribution.cdf(2)

0.02275013194817921

9.2.7 Use the inverse cumulative distribution function of a normal distribution

For an instance of a normal distribution with mean µ and σ, the inverse cumulative distri-
bution function which for a given p gives x such that p = P (X < x) can be accessed using
statistics.NormaDist.inv cdf.
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Usage

1 distribution = statistics.NormalDist(mu, sigma)
2 distribution.inv_cdf(p)

For example, to find the value of X for which a normally distributed random variable
with µ = 3 and σ = .5 will be less than with probability .7.

Jupyter input

1 import statistics as st
2

3 distribution = st.NormalDist(mu=3, sigma=.5)
4 distribution.inv_cdf(.7)

3.2622002563540202

9.3 EXERCISES

1. For each of the following sets of data:

(a) Data set 1:

Jupyter input

1 data_set_1 = (
2 74,
3 -7,
4 58,
5 82,
6 60,
7 3,
8 49,
9 85,

10 24,
11 99,
12 73,
13 76,
14 11,
15 -4,
16 61,
17 87,
18 93,
19 13,
20 1,
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21 28,
22 )

(b) Data set 2:

Jupyter input

1 data_set_2 = (
2 65,
3 59,
4 81,
5 81,
6 76,
7 93,
8 91,
9 88,

10 55,
11 97,
12 86,
13 94,
14 79,
15 54,
16 63,
17 56,
18 58,
19 77,
20 85,
21 88,
22 )

(c) Data set 3:

Jupyter input

1 data_set_3 = (
2 0.31,
3 -0.13,
4 0.19,
5 0.46,
6 -0.27,
7 -0.06,
8 0.20,
9 0.42,

10 -0.07,
11 0.11,
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12 -0.11,
13 -0.43,
14 -0.36,
15 0.45,
16 -0.42,
17 0.11,
18 0.08,
19 0.31,
20 0.48,
21 0.17,
22 )

(d) Data set 4:

Jupyter input

1 data_set_4 = (
2 2,
3 4,
4 2,
5 2,
6 2,
7 2,
8 2,
9 3,

10 2,
11 2,
12 2,
13 4,
14 2,
15 4,
16 2,
17 2,
18 3,
19 4,
20 3,
21 4,
22 )

Calculate:
• The mean,
• The median,
• The max,
• The min,
• The population standard deviation,
• The sample standard deviation,
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• The population variance,
• The sample variance,
• The quartiles (the set of n = 4 quantiles), and
• The deciles (the set of n = 10 quantiles).

2. Calculate the sample covariance and the correlation coefficient for the following pairs
of data sets from question 1:

(a) data set 1 and data set 4

(b) data set 3 and data set 4

(c) data set 2 and data set 3

(d) data set 1 and data set 2

3. For each of the data sets from question 1 obtain the covariance and correlation coef-
ficient for the data set with itself.

4. Obtain a for the pairs of data sets from question 2.

5. Given a collection of 250 individuals whose height is normally distributed with mean
165 and standard deviation 5. What is the expected number of individuals with height
between 150 and 160?

6. Consider a class test where the scores are normally distributed with mean 65 and
standard deviation 5.

(a) What is the probability of failing the class test (a score less than 40)?
(b) What proportion of the class gets a first class mark (a score above 70)?
(c) What is the mark that only 10% of the class would expect to get more than?

9.4 FURTHER INFORMATION

9.4.1 What is the difference between the sample and the population variance and
standard deviation?

For a given set of N values x1, x2, . . . , xN with mean x̄ the sample standard deviation is
given by:

σ =

√∑N
i=1 (xi − x̄)2

N − 1

The sample variance is given by:

σ2

The population standard deviation is given by:

σ =

√∑N
i=1 (xi − x̄)2

N

The population variance is given by:

σ2
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The population standard deviation and/or variance should be used when the data set
in question is for the entire population.

The sample standard deviation and/or variance should be used when the data set in
question is a sample of the entire population. The modification in the calculation is to
counteract a potential bias.

9.4.2 How to plot a line of best fit?

The main library for plotting is called matplotlib. Below is some code to plot the data and
regression line for two collections of data. Figure 9.4 gives the output.

0 1 2 3 4 5

x

6

4

2

0

2

4

y

Figure 9.4 Example of plotting a fitted line.

Jupyter input

1 import statistics as stat
2 import matplotlib.pyplot as plt
3

4 x = (0, 2, 2, 3, 4, 5.6)
5 y = (-1, -3, -4, -5, 4, -7)
6

7 slope, intercept = stat.linear_regression(x, y)
8

9 start_point, end_point = min(x), max(x)
10 image_start_point = slope * start_point + intercept
11 image_end_point = slope * end_point + intercept
12

13 plt.figure()
14 plt.scatter(x, y)
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15 plt.plot((start_point, end_point), (image_start_point,
image_end_point))↪→

16 plt.xlabel("$x$")
17 plt.ylabel("$y$")

9.4.3 What other statistics tools exist in Python?

The statsmodels library allows for a wider breadth of statistical analysis. The scikit-learn
library is arguably one of the most popular python libraries. It is technically a library for
machine learning and not statistics.

9.4.4 What is the difference between machine learning and statistics?

In a lot of cases the difference here is more question of vocabulary than actual tangible
differences.

For example, the scikit-learn library has a tool for linear regression as does the
statsmodels and the statistics library.

In practice statistics is often more descriptive, for example, using linear regression to
understand the relationship between two variables. Whereas machine learning is more pre-
dictive, for example using liner regression to predict one variable value from another.

A lot of modern applied mathematics uses tools such as neural networks which are
considered to be from the field of machine learning.



C H A P T E R 10

Differential Equations

A differential equation is an equation that relates one or more quantities and their deriva-
tives. These can often be used to model real-world systems.

In this chapter you will cover:

• Creating a symbolic function;

• Writing a differential equation; and

• Solving a differential equation.

10.1 TUTORIAL

You will solve the following problem using a computer to do some of the more tedious
calculations.

A container has volume V of liquid which is poured in at a rate proportional to e−t

(where t is some measurement of time). Initially the container is empty and after t = 3 time
units the volume of liquid is 15.

1. Show that V (t) = −15e3

1−e3 (1 − e−t).

2. Obtain the limit limt→∞ V (t).

You first need to create the differential equation described in the question:

Jupyter input

1 import sympy as sym
2

3 t = sym.Symbol("t")
4 k = sym.Symbol("k")
5 V = sym.Function("V")
6

7 differential_equation = sym.Eq(lhs=sym.diff(V(t), t), rhs=k *
sym.exp(-t))↪→

8 differential_equation

132 DOI: 10.1201/9781003451860-10

https://doi.org/10.1201/9781003451860-10
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d

dt
V (t) = ke−t

In order to solve the differential equation write:

Jupyter input

1 sym.dsolve(differential_equation, V(t))

V (t) = C1 − ke−t

Note that the question gives an initial condition: “initially the container is empty” which
corresponds to V (0) = 0. You can pass this to the call to solve the differential equation:

Jupyter input

1 condition = {V(0): 0}
2 particular_solution = sym.dsolve(differential_equation, V(t),

ics=condition)↪→

3 sym.simplify(particular_solution)

V (t) = k − ke−t

You also know that V (3) = 15 which corresponds to the following equation:

Jupyter input

1 equation = sym.Eq(particular_solution.rhs.subs({t: 3}), 15)
2 equation

− k

e3 + k = 15

You can solve this equation to find a value for k:

Jupyter input

1 sym.simplify(sym.solveset(equation, k))
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{
− 15e3

1 − e3

}

which is the required value.
You can use the complete expression for V (t) to take the limit:

Jupyter input

1 limit = sym.limit((-15 * sym.exp(3) / (1- sym.exp(3))) * (1 -
sym.exp(-t)), t, sym.oo)↪→

2 limit

− 15e3

1 − e3

This is approximately:

Jupyter input

1 float(limit)

15.78593544736884

In this tutorial you have

• Created a differential equation.

• Obtained the general solution of a differential equation.

• Obtained the particular solution of a differential equation.

10.2 HOW TO

10.2.1 Create a symbolic function

To create a symbolic function use sympy.Function.

Usage

1 sympy.Function("y")

For example:
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Jupyter input

1 import sympy as sym
2

3 y = sym.Function("y")
4 y

y

You can pass symbolic variables to this symbolic function:

Jupyter input

1 x = sym.Symbol("x")
2 y(x)

y(x)

Now, you can create the derivative of a symbolic function:

Jupyter input

1 sym.diff(y(x), x)

d

dx
y(x)

10.2.2 Create a differential equation

To create a differential equation use sympy.Eq.

Usage

1 import sympy as sym
2

3 y = sym.Function("y")
4 x = sym.Symbol("x")
5

6 equation = sym.Eq(lhs, rhs)

Where lhs and rhs are expressions in y, dy
dx and x.

For example, to create the differential equation: dy
dx = cos(x)y write:
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Jupyter input

1 import sympy as sym
2

3 y = sym.Function("y")
4 x = sym.Symbol("x")
5

6 lhs = sym.diff(y(x), x)
7 rhs = sym.cos(x) * y(x)
8 differential_equation = sym.Eq(lhs, rhs)
9 differential_equation

d

dx
y(x) = y(x) cos (x)

10.2.3 Obtain the general solution of a differential equation

To obtain the generation solution to a differential equation use: sympy.dsolve.

Usage

1 import sympy as sym
2

3 y = sym.Function("y")
4 x = sym.Symbol("x")
5

6 equation = sym.Eq(lhs, rhs)
7 sym.dsolve(equation, y(x))

For example, to solve the differential equation: dy
dx = cos(x)y write:

Jupyter input

1 import sympy as sym
2

3 y = sym.Function("y")
4 x = sym.Symbol("x")
5

6 lhs = sym.diff(y(x), x)
7 rhs = sym.cos(x) * y(x)
8 differential_equation = sym.Eq(lhs, rhs)
9 sym.dsolve(differential_equation, y(x))

y(x) = C1esin (x)
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10.2.4 Obtain the particular solution of a differential equation

To obtain the particular solution to a differential equation use: sympy.dsolve and pass the
initial conditions: ics.

Usage

1 import sympy as sym
2

3 y = sym.Function("y")
4 x = sym.Symbol("x")
5

6 equation = sym.Eq(lhs, rhs)
7 sym.dsolve(equation, y(x), ics={y(x_0): value})

For example, to solve the differential equation: dy
dx = cos(x)y with the condition y(5) = π

write:

Jupyter input

1 import sympy as sym
2

3 y = sym.Function("y")
4 x = sym.Symbol("x")
5

6 lhs = sym.diff(y(x), x)
7 rhs = sym.cos(x) * y(x)
8 differential_equation = sym.Eq(lhs, rhs)
9

10 condition = {y(5): sym.pi}
11 sym.dsolve(differential_equation, y(x), ics=condition)

y(x) = πe− sin (5)esin (x)

The syntax used here is similar to substituting values into algebraic expressions (see
Section 3.3.7).

10.3 EXERCISES

1. Create the following differential equations:

(a) dy
dx = cos(x)

(b) dy
dx = 1 − y

(c) dy
dx = x − 50

10
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(d) dy
dx = y2 ln(x)

(e) dy
dx = (1 + y)2

2. Obtain the general solution for the equations in question 1.

3. Obtain the particular solution for the equations in question 1 with the following
particular conditions:

(a) y(0) = π

(b) y(2) = 3
(c) y(50) = 1
(d) y(e) = 1
(e) y(−1) = 3

4. The rate of increase of a population (p) is equal to 1% of the size of the population.

(a) Define the differential equation that models this situation.
(b) Given that p(0) = 5000 find the population after 5 time units.

5. The rate of change of the temperature of a hot drink is proportional to the difference
between the temperature of the drink (T ) and the room temperature (TR).

(a) Define the differential equation that models this situation.
(b) Solve the differentia equation.
(c) Given that T (0) = 100 and the room temperature is $TR = 20$ obtain the

particular solution.
(d) Use the particular solution to identify how on it will take for the drink to be ready

for consumption (a temperature of 80) given that after 3 time units T (3) = 90.

10.4 FURTHER INFORMATION

10.4.1 How to solve a system of differential equations?

Given a system of differential equations like the following:




dx
dt = x − y
dy
dt = x + y

y(0) = 250
y(1) = 300

You can solve it using sym.dsolve but instead of passing a single differential equation,
pass an iterable of multiple equations:
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Jupyter input

1 import sympy as sym
2

3

4 y = sym.Function("y")
5 x = sym.Function("x")
6

7 t = sym.Symbol("t")
8 alpha = sym.Symbol("alpha")
9 beta = sym.Symbol("beta")

10

11 system_of_equations = (
12 sym.Eq(sym.diff(y(t), t), alpha * x(t)),
13 sym.Eq(sym.diff(x(t), t), beta * y(t)),
14 )
15 conditions = {y(0): 250, y(1): 300}
16

17 y_solution, x_solution = sym.dsolve(system_of_equations,
ics=conditions, set=True)↪→

18 x_solution

x(t) = −
50β

(
5e

√
αβ − 6

)
e
√

αβe−t
√

αβ

√
αβ

(
e2

√
αβ − 1

) +
50β

(
6e

√
αβ − 5

)
et

√
αβ

√
αβ

(
e2

√
αβ − 1

)

Jupyter input

1 y_solution

y(t) =
50 ·

(
5e

√
αβ − 6

)
e
√

αβe−t
√

αβ

e2
√

αβ − 1
+

50 ·
(

6e
√

αβ − 5
)

et
√

αβ

e2
√

αβ − 1

10.4.2 How to solve differential equations numerically?

Some differential equations do not have a closed form solution in terms of elementary func-
tions. For example, the Airy or Stocks equation:

d2y

dx2 = xy

Attempting to solve this with Sympy gives:
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Jupyter input

1 import sympy as sym
2

3 y = sym.Function("y")
4 x = sym.Symbol("x")
5

6 equation = sym.Eq(sym.diff(y(x), x, 2), x * y(x))
7 sym.dsolve(equation, y(x))

y(x) = C1Ai (x) + C2Bi (x)

which is a linear combination of Ai and Bi which are special functions called the Airy
functions of the first and second kind.

Using scipy.integrate it is possible to solve this differential equation numerically.
First, define a new variable u = dy

dx so that the second-order differential equation can be
expressed as a system of single-order differential equations:{

du
dx = xy
dy
dx = u

Now define a python function that returns the right hand side of that system of equations:

Jupyter input

1 def diff(state, x):
2 """
3 Returns the value of the derivates for a given set of state values

(u, y).↪→

4 """
5 u, y = state
6 return x * y, u

You can pass this to scipy.integrate.odeint which is a tool that carries out numerical
integration of differential equations. Note, that it is incapable of dealing with symbolic
variables, thus an initial numeric value of (u, y) is required.

Jupyter input

1 import numpy as np
2 import scipy.integrate
3

4 initial_state = (.1, -.5)
5

6 xs = np.linspace(0, 1, 50)
7 states = scipy.integrate.odeint(diff, y0=initial_state, t=xs)
8
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Here, you make use of numpy to create a collection of x values over which to carry out
the numerical integration.

This returns an array of values of states corresponding to (u, y).

Jupyter input

1 states

array([[ 0.1 , -0.5 ],
[ 0.09989617, -0.49795991],
[ 0.09958578, -0.49592403],
[ 0.09907053, -0.49389658],
...
[-0.09525243, -0.46835567],
[-0.10414704, -0.47038996],
[-0.11327831, -0.47260818],
[-0.12265169, -0.47501521],
[-0.13227299, -0.47761605]])

Figure 10.1 shows a plot of the above with a comparison to the exact expected values
(obtained using the of the first and second kind).
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Figure 10.1 Numerical and exact solution to the Stokes differential equation.
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C H A P T E R 11

Variables, Conditionals and
Loops

In the previous chapters you have explored a number of tools that allow you to use math-
ematical knowledge more efficiently. In this part of the book you will start to gain the
knowledge necessary to build such tools.

In this chapter you will cover:

• Creating variables.

• Run code depending on a given condition.

• Repeat code as long as a given condition is met.

• Repeat code over a given iterable.

11.1 TUTORIAL

You will here use a computer to gain some evidence to help tackle the following problem.
Consider the following polynomial:

p(n) = n2 + n + 41

1. Verify that p(n) is for n ∈ Z up until n = 20.

2. What is the smallest value of n for which p(n) is no longer prime?

You will start by defining a function for p(n):

Jupyter input

1 def p(n):
2 """
3 Return the value of n ˆ 2 + n + 41 for a given value of n.
4 """
5 return n ** 2 + n + 41
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You will use sympy to check if a number is prime.

Jupyter input

1 import sympy as sym
2

3 sym.isprime(3)

True

Jupyter input

1 sym.isprime(4)

False

Now to answer the first question you will use a list comprehension to create a list of
boolean variables that confirm if p(n) is prime.

This is similar to what was done in Chapter 7.

Jupyter input

1 checks = [sym.isprime(p(n)) for n in range(21)]
2 checks

[True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True]
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You can use the all tool to check if all the boolean values are true:

Jupyter input

1 all(checks)

True

Using list comprehensions is a mathematical way of repeating code but at times it
might prove useful to repeat code in a different way using a standard for statement.

In that case you can essentially repeat the previous exercise using:

Jupyter input

1 checks = []
2 for n in range(21):
3 value = p(n)
4 is_prime = sym.isprime(value)
5 checks.append(is_prime)
6 all(checks)

True

The main difference between the two approaches is that you can include multiple lines
of indented code to be repeated for every value of n in range(21).

A for loop or a list comprehension should be used when you know how many repetitions
are necessary.

To answer the second question you will repeat the code until the value of p(n) is no
longer prime.

Jupyter input

1 n = 0
2 while sym.isprime(p(n)):
3 n += 1
4 n

40

A while loop should be used when you do not know how many times a repetition
should be made but you know under what conditions it should be made.

Indeed for n = 40 you have:
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Jupyter input

1 p(n)

1681

and

Jupyter input

1 sym.isprime(p(n))

False

sympy can also factor the number:

Jupyter input

1 sym.factorint(p(n))

Jupyter input

1 41 ** 2

Indeed:

Jupyter input

1 41 ** 2

1681

11.2 HOW TO

11.2.1 Define an integer variable

To define an integer variable use the = operator which is the assignment operator. Create
the name of the variable, then the assignment operator followed by the integer value.

Usage

1 name_of_variable = int_value

{41:2}
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For example:

Jupyter input

1 year = 2020
2 year

2020

When choosing a variable name there are some rules to follow:

• No spaces, use instead.

• Do not start with a number or other special characters.

There are other important conventions:

• Use explicit names that clearly describe what the variable is. Try not to use i, a
unless those refer to specific mathematical variables.

• Do not use CamelCase but use snake case when combining words. This follows
the Python convention called PEP8.

11.2.2 Define a float variable

To define a float variable use the = operator which is the assignment operator. Create the
name of the variable, then the assignment operator followed by the real value.

Usage

1 name_of_variable = float_value

For example:

Jupyter input

1 cms_in_an_inch = 2.54
2 cms_in_an_inch

2.54

11.2.3 Define a string variable

To define a string variable use the = operator which is the assignment operator. Create
the name of the variable, then the assignment operator followed by the string which is a
combination of characters between quotation marks.
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Usage

1 name_of_variable = string_value

For example:

Jupyter input

1 capital_of_dominica = "roseau"
2 capital_of_dominica

'roseau'

11.2.4 Define a boolean variable

A boolean variable is one of two things: True or False. To define a boolean variable you use
the = assignment operator. Create the name of the variable then the assignment operator
followed by the boolean variable (either True or False).

Usage

1 name_of_variable = boolean_value

For example:

Jupyter input

1 john_nash_has_a_nobel = True
2 john_nash_has_a_nobel

Jupyter input

1 True

Section 6.2.3 gives an overview of how to create boolean variables from other variables.

11.2.5 Check the type of a variable

You can get the type of a variable using the type tool.
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Usage

1 type(object)

Where object is any variable.
For example:

Jupyter input

1 year = 2020
2 type(year)

int

Jupyter input

1 cms_in_an_inch = 2.54
2 type(cms_in_an_inch)

float

Jupyter input

1 capital_of_dominica = "roseau"
2 type(capital_of_dominica)

str

If a numeric variable is given with any decimal part (including 0), then it is considered
to be a float.

11.2.6 Manipulate numeric variables

Numeric values can be combined to create new numeric variables.
1. Addition, 2 + 2: 2 + 2;

2. Subtraction, 3 − 1: 3 - 1;

3. Multiplication, 3 × 5: 3 * 5;

4. Division, 20/5: 20 / 5;

5. Exponentiation, 24: 2 ** 4;

6. Integer remainder, 5 mod 2: 5 % 2; and

7. Combining operations, 23+1
4 : (2 ** 3 + 1) / 4;

For example:
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Jupyter input

1 cms_in_an_inch = 2.54
2 average_male_height_in_cms = 170
3 average_male_height_in_inches = average_male_height_in_cms /

cms_in_an_inch↪→

4 average_male_height_in_inches

66.92913385826772

This is similar to what what is shown in Section 2.3.6.
Some languages, including Python have a shortcut to manipulate a variable “in place”.

The following takes the variable money and replaces it by 3 times money:

Jupyter input

1 money *= 3

This is equivalent to:

Jupyter input

1 money = money * 3

11.2.7 Include variables in strings

Variables can be used in strings using string formatting. There are numerous ways this
can be done in Python but the current best practice is to use f-strings.

Usage

1 f"{variable}"

For example, the following creates a string that uses a random number:

Jupyter input

1 import random
2

3 random.seed(0)
4 random_number = random.random()
5 string = f"Here is a random number: {random_number}"
6 string
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'Here is a random number: 0.8444218515250481'

11.2.8 Combine collections of boolean variables

Given an iterable of booleans it is possible to check if any or all of them are True using any
or all:

Usage

1 all(iterable)

Usage

1 any(iterable)

For example:

Jupyter input

1 iterable = (True, True, False, True, True)
2 all(iterable)

False

Jupyter input

1 any(iterable)

True

11.2.9 Run code if a condition holds

An important part of giving instructions to a computer is to specify when to do different
things. This is done using what is called an if statement. Following an if, a boolean variable
is expected, if that boolean is True then the indented code that follows is run. Otherwise it
is not.



154 ■ Python for Mathematics

Usage

1 if boolean:
2 code to run if boolean is true
3 else:
4 code to run if boolean is false
5 code to run after either of two previous code blocks are run.

An else statement is not always necessary. Specifically when combined with functions
as seen in Chapter 7 the else is often not needed.

For example, the following code selects a random integer between 0 and 100 and then
returns a different string depending on what the number was.

Jupyter input

1 import random
2

3 random.seed(0)
4 random_number = random.randint(0, 100)
5 is_even = random_number % 2 == 0
6 if is_even:
7 message = f"The random number ({random_number}) is even."
8 else:
9 message = f"The random number ({random_number}) is odd."

10 message

'The random number (49) is odd.'

11.2.10 Repeat code for a given set of variables

Given an iterable, it is possible to repeat some code for every item in the iterable. This
is done using what is called a for loop. Following the for a placeholder variable is given,
then followed by the in keyword and the iterable. After that the indented code that will be
repeated for every value of the iterable.

Usage

1 for placeholder_variable in iterable:
2 code to repeat

For example, the following will print a message for every given value in the iterable:
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Jupyter input

1 iterable = ("Dog", 3, 2, -1.0)
2 for item in iterable:
3 type_of_variable = type(item)
4 message = f"The variable {item} has type {type_of_variable}"
5 print(message)

The variable Dog has type <class 'str'>
The variable 3 has type <class 'int'>
The variable 2 has type <class 'int'>
The variable -1.0 has type <class 'float'>

for loops are a common tool across most programming languages. They are similar to
the list comprehensions seen in Section 7.2.5.

• List comprehensions should be specifically used when the goal is to create a
collection of items.

• Traditional for loops should be used when the code to run for every iteration is
more complex.

A common use case of for loops is to combine them with a range statement to repeat
code a known number of items.

11.2.11 Repeat code while a given condition holds

To repeat code while a condition holds a while loop should be used. Similarly to the if
statement, following a while, a boolean variable is expected, if that boolean is True, then
the indented code that follows is repeated. After it is run, the boolean is checked once more.
When the boolean is False the indented code is skipped.

Usage

1 while boolean:
2 code to repeat before checking boolean once more
3 code to run once boolean is False

Here is some code that repeatedly selects a random integer until that number is even.
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Jupyter input

1 import random
2

3 random.seed(4)
4 selected_integer = random.randint(0, 10)
5 number_of_selections = 1
6 while selected_integer % 2 == 1:
7 selected_integer = random.randint(0, 10)
8 number_of_selections += 1
9 number_of_selections

2

11.2.12 Iterate over pairs of items from two iterables

To create a new iterable of pairs of items from two separate iterables use zip:

Usage

1 zip(iterable_1, iterable_2)

For example:

Jupyter input

1 basket = ("Carrots", "Potatoes", "Strawberries", "Juice", "Ice cream")
2 prices = (4, 2, 6, 3, 10)
3 pairs = [(item, price) for item, price in zip(basket, prices)]
4 pairs

[('Carrots', 4),
('Potatoes', 2),
('Strawberries', 6),
('Juice', 3),
('Ice cream', 10)]

11.2.13 Iterate over and index items from an iterable

To iterate over items from an iterable and keep track of their index use enumerate:

Usage

1 enumerate(iterable)
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For example:

Jupyter input

1 basket = ("Carrots", "Potatoes", "Strawberries", "Juice", "Ice cream")
2 indices_and_items = [(count, item) for count, item in

enumerate(basket)]↪→

3 indices_and_items

[(0, 'Carrots'),
(1, 'Potatoes'),
(2, 'Strawberries'),
(3, 'Juice'),
(4, 'Ice cream')]

11.3 EXERCISES

1. Using a for loop print the types of the variables in each of the following iterables:

(a) iterable = (1, 2, 3, 4)

(b) iterable = (1, 2.0, 3, 4.0)

(c) iterable = (1, "dog", 0, 3, 4.0)

2. Consider the following polynomial:

3n3 − 183n2 + 3318n − 18757

(a) Use the sympy.isprime function to find the lowest positive integer value of n for
which the absolute value of that polynomial is not prime?

(b) How many unique primes up until the first non-value are there? (Hint: the set
tool might prove useful here.)

3. Check the following identity for each value of n ∈ {0, 10, 100, 2000}:
n∑

i=0
i = n(n + 1)

2

4. Check the following identity for all positive integer values of n less than 5000:
n∑

i=0
i2 = n(n + 1)(2n + 1)

6

5. Repeat the experiment of selecting a random integer between 0 and 10 until it is even
1000 times. What is the average number of times taken to select an even number?
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11.4 FURTHER INFORMATION

11.4.1 Why can I not only use a while loop?

The for loop allows you to iterate over any selection of objects. Some languages do not
have a generic for loop. In some cases it is only possible to iterate over a set of integers
(similar to the for i in range(n) pattern) or to only use a while loop.

Because of this, it is often the case that you will see code that uses while loops instead
of for loops. For example:

Jupyter input

1 seasons = ("Winter", "Spring", "Summer", "Autumn")
2

3 number_of_seasons = len(seasons)
4 i = 0
5 while i < number_of_seasons:
6 season = seasons[i]
7 print(season)
8 i += 1

Winter
Spring
Summer
Autumn

The above code is equivalent to:

Jupyter input

1 seasons = ("Winter", "Spring", "Summer", "Autumn")
2 for season in seasons:
3 print(season)

Winter
Spring
Summer
Autumn

While it is possible to use a while loop instead of a for loop there are no advantages to
doing that and in fact only disadvantages:

• Using the while loop requires iterating over the iterable twice: the first time when
counting the length of it using len and the second time during the while statement
itself.

• There is more potential for error in the code: it would not be unlikely to have an off
by one error in the boolean condition.

• It is less readable.
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The following is a good guideline:
• Use a for loop when you know what you are iterating over.

• Use a while loop when only know a specific condition under which you should iterate.

11.4.2 Why should I not check if a boolean is equal to True or False

It is possible to create a boolean by comparing another boolean to True or False for example:

Jupyter input

1 boolean = False
2 boolean == True

False

Thus when using if or while statements you might sometimes see things like the fol-
lowing:

Jupyter input

1 import random
2

3 random.seed(4)
4 selected_integer = random.randint(0, 10)
5 number_of_selections = 1
6 while (selected_integer % 2 == 1) == True:
7 selected_integer = random.randint(0, 10)
8 number_of_selections += 1
9 number_of_selections

2

or:

Jupyter input

1 random.seed(4)
2 selected_integer = random.randint(0, 10)
3 number_of_selections = 1
4 while (selected_integer % 2 == 1):
5 selected_integer = random.randint(0, 10)
6 number_of_selections += 1
7 number_of_selections

2

However, this is not best practice. A better approach is to use is instead of ==:
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Jupyter input

1 import random
2

3 random.seed(4)
4 selected_integer = random.randint(0, 10)
5 number_of_selections = 1
6 while (selected_integer % 2 == 1) is True:
7 selected_integer = random.randint(0, 10)
8 number_of_selections += 1
9 number_of_selections

2

This is due to the fact that when using == variables that are not booleans will be
converted to booleans and this might not be the expected behaviour.

For example:

Jupyter input

1 number = 0
2 number == False

True

however:

Jupyter input

1 number is False

False



C H A P T E R 12

Functions and Data
Structures

In the previous chapters you have explored a number of tools that allow you to use your
mathematical knowledge more efficiently. In this chapter you continue to gain the knowledge
necessary to build these tools covering the following topics:

In this chapter you will cover:

• Defining and using functions.

• Defining and using various data structures.

12.1 TUTORIAL

Similarly to Chapter 11, you will use a computer to gain numerical evidence for a problem.
Consider the following sequence:




a0 = 0,
a1 = 1,
an = an−1 + an−2, n ≥ 2

Verify that the following identity holds for n ≤ 500:
n

i=0
ai = an+2 − 1

You will start by defining a function for a(n):
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Jupyter input

1 import functools
2

3

4 @functools.lru_cache()
5 def get_fibonacci(n):
6 """
7 A function to give the nth Fibonacci number using the recursive
8 definition.
9

10 Note that this also uses a cache.
11

12 Parameters
13 ----------
14 n: int
15 The index of the Fibonacci number
16

17 Returns
18 -------
19 int
20 The nth Fibonacci number
21 """
22 if n == 0:
23 return 0
24 if n == 1:
25 return 1
26 return get_fibonacci(n - 1) + get_fibonacci(n - 2)

This uses caching in the function definition with lru cache. This is not necessary but
makes the code more efficient. Caching is covered in Section 8.4.2.

You will print the first ten numbers to ensure everything is working correctly:

Jupyter input

1 for n in range(10):
2 print(get_fibonacci(n))

0
1
1
2
3
5
8
13
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21
34

Now write a function that returns a boolean: True if the equation holds for a given value
of n, False otherwise.

Jupyter input

1 def check_theorem(n):
2 """
3 A function that generate the lhs and rhs of the
4 following relationship:
5

6 \sum_{i=0}ˆn a_i = a_{n + 2} - 1
7

8 Where `a_i` is the i-th Fibonacci number.
9

10 It checks if the relationship holds.
11

12 Parameters
13 ----------
14 n: int
15 The index n for which the theorem is to be verified.
16

17 Returns
18 -------
19 bool
20 Whether or not the theorem holds for a given n.
21 """
22 sum_of_fibonacci = sum(get_fibonacci(i) for i in range(n + 1))
23 return sum_of_fibonacci == get_fibonacci(n + 2) - 1

Generate checks for n ≤ 500:

Jupyter input

1 checks = [check_theorem(n) for n in range(501)]
2 checks

[True,
True,
True,
...
True,
True,
True]

Confirm that all the booleans in checks are True:
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Jupyter input

1 all(checks)

True

12.2 HOW TO

Two important data structures have already been seen in previous chapters:

• Tuples: Section 6.2.1.

• Lists: Section 7.2.1.

12.2.1 Define a function

See Section 7.2.2.

12.2.2 Write a docstring

A docstring is an attribute of a function that describes what it is. This can describe what
it does, how it does it and/or why it does it. Here is how to write a docstring for a function
that takes variables and returns a value.

Usage

1 def name(parameter1, parameter2, ...):
2 """
3 <A description of what the function is.>
4

5 Parameters
6 ----------
7 parameter1 : <type of parameter1>
8 <description of parameter1>
9 parameter2 : <type of parameter2>

10 <description of parameter2>
11 ...
12

13 Returns
14 -------
15 <type of what the function returns>
16 <description of what the function returns>
17

18 """
19 INDENTED BLOCK OF CODE
20 return output

For example, here is how to write a function that returns x3 for a given x:
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Jupyter input

1 def x_cubed(x):
2 """
3 Calculates and returns the cube of x. Does this by using Python
4 exponentiation.
5

6 Parameters
7 ----------
8 x : float
9 The value of x to be raised to the power 3

10

11 Returns
12 -------
13 float
14 The cube.
15 """
16 return x ** 3

12.2.3 Create a tuple

See Section 6.2.1.

12.2.4 Create a list

See Section 7.2.1.

12.2.5 Create a list using a list comprehension

See Section 7.2.5.

12.2.6 Combine lists

Given two lists it is possible to combine them to create a new list using the + operator:

Usage

1 first_list + other_list

Here is an example of creating a single list from two separate lists:
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Jupyter input

1 first_list = [1, 2, 3]
2 other_list = [5, 6, 100]
3 combined_list = first_list + other_list
4 combined_list

[1, 2, 3, 5, 6, 100]

12.2.7 Append an element to a list

Appending an element to a list is done using the append method.

Usage

1 a_list.append(element)

Here is an example where you append a new string to a list of strings:

Jupyter input

1 names = ["Vince", "Zoe", "Julien", "Kaitlynn"]
2 names.append("Riggins")
3 names

['Vince', 'Zoe', 'Julien', 'Kaitlynn', 'Riggins']

It is not possible to do this with a tuple as a tuple is immutable. See Section 7.4.1
for more information on the difference between a list and a tuple.

12.2.8 Remove an element from a list

To remove a given element from a list use the remove method.

Usage

1 a_list.remove(element)

Here is an example removing a number from a list of numbers:
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Jupyter input

1 numbers = [1, 94, 23, 202, 5]
2 numbers.remove(23)
3 numbers

[1, 94, 202, 5]

It is not possible to remove an element from a tuple as a tuple is immutable. See
Section 7.4.1 for more information on the difference between a list and a tuple.

12.2.9 Sort a list

To sort a list use the sort method.

Usage

1 a_list.sort()

Here is an example:

Jupyter input

1 names = ["Vince", "Zoe", "Kaitlynn", "Julien"]
2 names.sort()
3 names

['Julien', 'Kaitlynn', 'Vince', 'Zoe']

To sort a list in reverse order use the sort method with the reverse=True parameter.

Jupyter input

1 names.sort(reverse=True)
2 names

['Zoe', 'Vince', 'Kaitlynn', 'Julien']

It is not possible to sort a tuple as a tuple is immutable. See Section 7.4.1 for more
information on the difference between a list and a tuple.

12.2.10 Create a sorted list from an iterable

To create a sorted list from an iterable use the sorted function.
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Usage

1 sorted(iterable)

Here is an example:

Jupyter input

1 tuple_of_numbers = (20, 50, 10, 6, 1, 50, 105)
2 sorted(tuple_of_numbers)

[1, 6, 10, 20, 50, 50, 105]

12.2.11 Access an element of an iterable

See Section 6.2.2.

12.2.12 Find the index of an element in an iterable

To identify the position of an element in an iterable use the index method.

Usage

1 iterable.index(element)

Here is an example:

Jupyter input

1 numbers = [1, 94, 23, 202, 5]
2 numbers.index(23)

2

Recall that python uses 0-based indexing. The first element in an iterable has index 0.

12.2.13 Access an element of an iterable using negative indexing

It is possible to access an element of an iterable by counting from the end of the iterable
using negative indexing.



Functions and Data Structures ■ 169

Usage

1 iterable[-index_from_end]

Here is an example showing how to access the penultimate element in a tuple:

Jupyter input

1 basket = ("Carrots", "Potatoes", "Strawberries", "Juice", "Ice cream")
2 basket[-2]

'Juice'

12.2.14 Slice an iterable

To create a new iterable from an iterable use [] and specify a start (inclusive) and end
(exclusive) pair of indices.

Usage

1 iterable[include_start_index: exclusive_end_index]

For example:

Jupyter input

1 basket = ("Carrots", "Potatoes", "Strawberries", "Juice", "Ice cream")
2 basket[2: 5]

('Strawberries', 'Juice', 'Ice cream')

12.2.15 Find the number of elements in an iterable

To count the number of elements in an iterable use len:

Usage

1 len(iterable)

For example:
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Jupyter input

1 basket = ("Carrots", "Potatoes", "Strawberries", "Juice", "Ice cream")
2 len(basket)

5

12.2.16 Create a set

A set is a collection of distinct objects. This can be created in Python using the set command
on any iterable. If there are non-distinct objects in the iterable, then this is an efficient way
to remove duplicates.

Usage

1 set(iterable)

Here is an example of creating a set:

Jupyter input

1 iterable = (1, 1, 3, 4, 4, 3, 2, 1, 10)
2 unique_values = set(iterable)
3 unique_values

{1, 2, 3, 4, 10}

12.2.17 Do set operations

Set operations between two sets can be done using Python:

• S1 ∪ S2: set 1 | set 2

• S1 ∩ S2: set 1 & set 2

• S1 \ S2: set 1 - set 2

• S1 ⊆ S2 (checking if S1 is a subset of S2): set 1 <= set 2

Here are some examples of carrying out the above:
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Jupyter input

1 set_1 = set((1, 2, 3, 4, 5))
2 set_2 = set((4, 5, 6, 7, 8, 9))
3

4 set_1 | set_2

{1, 2, 3, 4, 5, 6, 7, 8, 9}

Jupyter input

1 set_1 & set_2

{4, 5}

Jupyter input

1 set_1 - set_2

{1, 2, 3}

Jupyter input

1 set_1 <= set_2

False

12.2.18 Create hash tables

Lists and tuples allow us to immediately recover a value given its position. Hash tables
allow us to create arbitrary key value pairs so that given any key you can immediately
recover the value. This is called a dictionary in Python and is created using {} which takes
a collection of key: value pairs.

Usage

1 {key_1: value, key_2: value, ...}

For example, the following dictionary maps pet names to their ages:
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Jupyter input

1 ages = {"Riggins": 4, "Chick": 7, "Duck": 7}
2 ages

{'Riggins': 4, 'Chick': 7, 'Duck': 7}

To recover a value pass the key to the dictionary using [].
For example:

Jupyter input

1 ages["Riggins"]

4

If a key is used to recover the value with [] but the key is not in the dictionary, then
an error will be raised.

12.2.19 Access element in a hash table

As described in Section12.2.18 to access the value of a key in a hash table, use [].

Usage

1 dictionary[key]

It is also possible to use the get method. The get method can also be passed the value
of a default variable to return when the key is not in the hash table:

Jupyter input

1 dictionary.get(key, default)

For example:

Jupyter input

1 ages = {"Riggins": 4, "Chick": 7, "Duck": 7}
2 ages.get("Vince", -1)

-1
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12.2.20 Iterate over keys in a hash table

To iterate over the keys in a hash table, use the keys() method:

Usage

1 dictionary.keys()

For example:

Jupyter input

1 ages = {"Riggins": 4, "Chick": 7, "Duck": 7}
2 ages.keys()

dict_keys(['Riggins', 'Chick', 'Duck'])

12.2.21 Iterate over values in a hash table

To iterate over the values in a hash table, use the values() method:

Usage

1 dictionary.values()

For example:

Jupyter input

1 ages = {"Riggins": 4, "Chick": 7, "Duck": 7}
2 ages.values()

Jupyter input

1 dict_values([4, 7, 7])

12.2.22 Iterate over pairs of keys and value in a hash table

To iterate over pairs of keys and values in a hash table, use the items() method:
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Usage

1 dictionary.items()

For example:

Jupyter input

1 ages = {"Riggins": 4, "Chick": 7, "Duck": 7}
2 ages.items()

dict_items([('Riggins', 4), ('Chick', 7), ('Duck', 7)])

12.3 EXERCISES

1. Write a function that generates (n!).

2. Write a function that generates the nth triangular numbers defined by:

Tn = n(n + 1)
2

3. Verify the following that the following identify holds for positive integer values n ≤
500:

n∑
i=0

Ti = n(n + 1)(n + 2)
6

4. Consider the Monty Hall problem [11]:

“Suppose you’re on a game show, and you’re given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say No.
1, and the host, who knows what’s behind the doors, opens another door,
say No. 3, which has a goat. He then says to you, ‘Do you want to pick door
No. 2?’
Is it to your advantage to switch your choice?”

(a) Write a function that simulates the play of the game when you “stick” with the
initial choice. You might find random.shuffle and poping a list helpful.

(b) Write a function that simulates the play of the game when you “change” your
choice. You might find removing from a list helpful.

(c) Repeat the play of the game using both those functions and compare the prob-
ability of winning.



Functions and Data Structures ■ 175

12.4 FURTHER INFORMATION

12.4.1 What formats can be used to write a docstring?

The format used to write a docstring described in Section 12.2.2. is the one specified by the
Numpy project.

Amongst other things you can see how to specify further functionality:

• How to indicate if a parameter is optional.

• How to specify what types of errors might be raised by a function.

• How to specify when a function is a generator.

There are 2 other common specifications:

• Google’s Python Style Guide.

• The Sphinx Python Style Guide.

12.4.2 Are there tools available to assist with writing docstrings?

The darglint library can be used to check if docstrings match a given format.

12.4.3 Apart from removing duplicates and set operations what are the advantages
of using set?

One valuable uses of set is to efficiently identify if an element is in a given iterable or not:

Jupyter input

1 numbers = list(range(100000))
2 %timeit 100000 in numbers

474 µs ± 2.51 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Jupyter input

1 numbers = set(range(100000))
2 %timeit 100000 in numbers

15.2 ns ± 0.121 ns per loop (mean ± std. dev. of 7 runs, 100,000,000 loops each)



C H A P T E R 13

Object-Oriented
Programming

In the first part of this book you covered a number of tools that allow you to carry out
mathematical techniques. One example of this is the sympy.Symbol object that creates a
symbolic variable. In this chapter you will see how to define similar mathematical objects.

In this chapter you will cover:

• Creating objects.

• Giving objects attributes.

• Defining methods on objects.

• Inheriting new objects from others.

13.1 TUTORIAL

You will write some code to create and manipulate expressions. With sympy this is not
necessary as all functionality required is available within sympy; however, this will be a
good exercise in understanding how to build such functionality.

Consider the following quadratics:

f(x) = 5x2 + 2x − 7
g(x) = −4x2 − 3x + 12

h(x) = f(x) + g(x)

Without using sympy, obtain the roots for all the quadratics.
Start by defining an object to represent a quadratic. This is called a class.
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Jupyter input

1 import math
2

3

4 class QuadraticExpression:
5 """A class for a quadratic expression"""
6

7 def __init__(self, a, b, c):
8 self.a = a
9 self.b = b

10 self.c = c
11 self.discriminant = self.b ** 2 - 4 * self.a * self.c
12

13 def get_roots(self):
14 """
15 Return the real valued roots of the quadratic expression
16

17 Returns
18 -------
19 array
20 The roots of the quadratic
21 """
22 if self.discriminant >= 0:
23 x1 = -(self.b + math.sqrt(self.discriminant)) / (2 * self.a)
24 x2 = -(self.b - math.sqrt(self.discriminant)) / (2 * self.a)
25 return x1, x2
26 return ()
27

28 def __add__(self, other):
29 """A magic method: let's us have addition between

expressions"""↪→

30 return QuadraticExpression(self.a + other.a, self.b + other.b,
self.c + other.c)↪→

31

32 def __repr__(self):
33 """A magic method: changes the default way an instance is

displayed"""↪→

34 return f"Quadratic expression: {self.a} x ˆ 2 + {self.b} x +
{self.c}"↪→
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Four functions were created with this class:

• init : as this is surrounded by (two underscores) this is a magic function
that is run when we create an instance of our class.

• get roots: this returns the two real valued roots if the is positive.

• add : a magic function that is run when the + operator is used.

• repr : a magic function that gives the string representation of the instance.

Now use this class to solve the specified problem. First create instances of the class that
correspond to f and g. This is using the init function in the background.

Jupyter input

1 f = QuadraticExpression(a=5, b=2, c=-7)
2 g = QuadraticExpression(a=-4, b=-3, c=12)

You can now take a look at both of these instances. This is using the repr function
in the background:

Jupyter input

1 f

Quadratic expression: 5 x ˆ 2 + 2 x + -7

Jupyter input

1 g

Quadratic expression: -4 x ˆ 2 + -3 x + 12

Now you are going to create h(x) = f(x) + g(x). This is using the add function in
the background:

Jupyter input

1 h = f + g
2 h

Quadratic expression: 1 x ˆ 2 + -1 x + 5

You can now iterate over the quadratics and find the roots. This is using the get roots
function in the background:
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Jupyter input

1 roots = [quadratic.get_roots() for quadratic in (f, g, h)]
2 roots

[(-1.4, 1.0), (1.3971808598447282, -2.1471808598447284), ()]

Note that f and g have real valued roots but h does not. You can check the value of the
discriminant of h:

Jupyter input

1 h.discriminant

-19

You are going to create a new class from QuadraticExpression replacing the get roots
function with a new one that can handle imaginary roots and update the add function
to return an instance of the new class.

Jupyter input

1 class QuadraticExpressionWithAllRoots(QuadraticExpression):
2 """
3 A class for a quadratic expression that can return imaginary roots
4

5 The `get_roots` function returns two tuples of the form (re, im)
where re is↪→

6 the real part and im is the imaginary part.
7 """
8

9 def get_roots(self):
10 """
11 Return the real valued roots of the quadratic expression
12

13 Returns
14 -------
15 array
16 The roots of the quadratic
17 """
18 if self.discriminant >= 0:
19 x1 = -(self.b + math.sqrt(self.discriminant)) / (2 * self.a)
20 x2 = -(self.b - math.sqrt(self.discriminant)) / (2 * self.a)
21 return (x1, 0), (x2, 0)
22

23 real_part = self.b / (2 * self.a)
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24 im1 = math.sqrt(-self.discriminant) / (2 * self.a)
25 im2 = -math.sqrt(-self.discriminant) / (2 * self.a)
26 return ((real_part, im1), (real_part, im2))
27

28 def __add__(self, other):
29 """A special method: let's us have addition between

expressions"""↪→

30 return QuadraticExpressionWithAllRoots(
31 self.a + other.a, self.b + other.b, self.c + other.c
32 )

Now define the quadratics once again but using this new class:

Jupyter input

1 f = QuadraticExpressionWithAllRoots(a=5, b=2, c=-7)
2 g = QuadraticExpressionWithAllRoots(a=-4, b=-3, c=12)
3 h = f + g

Jupyter input

1 f

Quadratic expression: 5 x ˆ 2 + 2 x + -7

Jupyter input

1 g

Quadratic expression: -4 x ˆ 2 + -3 x + 12

Jupyter input

1 h

Jupyter input

1 Quadratic expression: 1 x ˆ 2 + -1 x + 5
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There is no need to redefine init , or repr as the new class inherits these from
QuadraticExpression due to this statement:

Jupyter input

1 class QuadraticExpressionWithAllRoots(QuadraticExpression):

You can now get all the roots for the quadratics:

Jupyter input

1 roots = [quadratic.get_roots() for quadratic in (f, g, h)]
2 roots

[((-1.4, 0), (1.0, 0)),
((1.3971808598447282, 0), (-2.1471808598447284, 0)),
((-0.5, 2.179449471770337), (-0.5, -2.179449471770337))]

13.2 HOW TO

13.2.1 Define a class

Define a class using the class keyword:

Usage

1 class Name:
2 """
3 A docstring between triple quotation to describe what the class

represents↪→

4 """
5 INDENTED BLOCKS OF CODE

For example to create a class for a country:

Jupyter input

1 class Country:
2 """
3 A class to represent a country
4 """

13.2.2 Create an instance of the class

Once a class is defined call it using ():
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Usage

1 Name()

For example:

Jupyter input

1 first_country = Country()
2 first_country

<__main__.Country at 0x7f22a8f76e00>

Jupyter input

1 second_country = Country()
2 second_country

<__main__.Country at 0x7f22a8f76e30>

The at < main Country at 0x7f22a8f76e30> is a pointer to the location of the instance
in memory. If you re-run the code that location will change.

13.2.3 Create an attribute

Attributes are variables that belong to instances of classes. They can be created and accessed
using .name of variable.

For example, the following creates the attributes name and amount of magic:

Jupyter input

1 first_country.name = "narnia"
2 first_country.amount_of_magic = 500

You can access them:

Jupyter input

1 first_country.name

'Narnia'
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Jupyter input

1 first_country.amount_of_magic

500

You can manipulate them in place:

Jupyter input

1 first_country.amount_of_magic += 100
2 first_country.amount_of_magic

600

13.2.4 Create and call a method

Methods are functions that belong to classes. Define a function using the def keyword (short
for define). The first variable of a method is always the specific instance that will call the
method (it is passed implicitly).

Usage

1 class Name:
2 """
3 A docstring between triple quotation to describe what the class

represents↪→

4 """
5 def name(self, parameter1, parameter2, ...):
6 """
7 <A description of what the method is.>
8

9 Parameters
10 ----------
11 parameter1 : <type of parameter1>
12 <description of parameter1>
13 parameter2 : <type of parameter2>
14 <description of parameter2>
15 ...
16

17 Returns
18 -------
19 <type of what the function returns>
20 <description of what the function returns>
21

22 """



184 ■ Python for Mathematics

23 INDENTED BLOCK OF CODE
24 return output

For example, let us create a class for a country that has the ability to “spend” magic:

Jupyter input

1 class Country:
2 """
3 A class to represent a country
4 """
5

6 def spend_magic(self, amount_spent):
7 """
8 Updates the magic attribute by subtracting amount_spent
9

10 Parameters
11 ----------
12 amount_spent : float
13 The amount of mana used.
14 """
15 self.amount_of_magic -= amount_spent

Now use it:

Jupyter input

1 first_country = Country()
2 first_country.name = "Narnia"
3 first_country.amount_of_magic = 500
4 first_country.spend_magic(amount_spent=100)
5 first_country.amount_of_magic

400

Even though the method is defined as taking two variables as inputs: self and
amount spent you only have to explicitly pass it amount spent. The first variable in
a method definition always corresponds to the instance on which the method exists.

13.2.5 How to create and call magic methods

Some methods can be called in certain situations:

• When creating an instance.

• When wanting to display an instance.
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These are referred to as dunder methods as they are all in between two underscores: .
The method that is called when an instance is created is called init (for initialised).

For example:

Usage

1 class Country:
2 """
3 A class to represent a country
4 """
5

6 def __init__(self, name, amount_of_magic):
7 self.name = name
8 self.amount_of_magic = amount_of_magic

Now instead of creating an instance and then creating the attributes you can do those
two things at the same time, by passing the variables to the class itself (which in turn passes
them to the init method):

Jupyter input

1 first_country = Country("Narnia", 500)
2 first_country.name

'Narnia'

Jupyter input

1 first_country.amount_of_magic

500

The method that returns a representation of an instance is repr . For example:

Jupyter input

1 class Country:
2 """
3 A class to represent a country
4 """
5

6 def __init__(self, name, amount_of_magic):
7 self.name = name
8 self.amount_of_magic = amount_of_magic
9
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10 def __repr__(self):
11 """Returns a string representation of the instance"""
12 return f"{self.name} with {self.amount_of_magic} magic."

Jupyter input

1 first_country = Country("Narnia", 500)
2 first_country

Narnia with 500 magic.

There are numerous other magic methods, such as the add one used in the tutorial
of this chapter.

13.2.6 Use inheritance

Inheritance is a tool that allows you to create one class based on another. This is done by
passing the Old class to the New class.

Usage

1 class New(Old)

For example, create a class of MuggleCountry that overwrites the init method but
keeps the rep method of the Country class written in Section 13.2.5:

Jupyter input

1 class MuggleCountry(Country):
2 """
3 A class to represent a country with no magic. It only requires the

name on↪→

4 initialisation.
5 """
6

7 def __init__(self, name):
8 self.name = name
9 self.amount_of_magic = 0

This has replaced the init method but the repr method is the same:
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Jupyter input

1 other_country = MuggleCountry("Wales")
2 other_country

Wales with 0 magic.

13.3 EXERCISES

1. Use the class created in Section 13.1 to find the roots of the following quadratics:

(a) f(x) = −4x2 + x + 6
(b) g(x) = 3x2 − 6
(c) h(x) = f(x) + g(x)

2. Write a class for a and use it to find the roots of the following expressions:

(a) f(x) = 2x + 6
(b) g(x) = 3x − 6
(c) h(x) = f(x) + g(x)

3. If rain drops were to fall randomly on a square of side length 2r, the probability of
the drops landing in an inscribed circle of radius r would be given by:

P = Area of circle
Area of square = πr2

4r2 = π

4

Thus, if you can approximate P , then you can approximate π as 4P . In this question
you will write code to approximate P using the random library.
First create the following class:

Jupyter input

1 class Drop:
2 """
3 A class used to represent a random rain drop falling on a

square of↪→

4 length r.
5 """
6

7 def __init__(self, r=1):
8 self.x = (0.5 - random.random()) * 2 * r
9 self.y = (0.5 - random.random()) * 2 * r

10 self.in_circle = (self.y) ** 2 + (self.x) ** 2 <= r ** 2

Note that the above uses the following equation for a circle centred at (0, 0) of radius
r:

x2 + y2 ≤ r2
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To approximate P create N = 1000 instances of Drops and count the number of those
that are in the circle. Use this to approximate π.

4. In a similar fashion to question 3, approximate the integral
∫ 1

0 1 − x2 dx. Recall that
the integral corresponds to the area under a curve.

13.4 FURTHER INFORMATION

13.4.1 How to pronounce the double underscore?

The double underscore used in magic methods like init or repr is pronounced “dun-
der”.

13.4.2 What is the self variable for?

In methods the first variable is used to refer to the instance of a given class. It is conventional
to use self.

As an example consider this class:

Jupyter input

1 class PetDog:
2 """
3 A class for a Pet.
4

5 Has two methods:
6 - `bark` which returns "Woof" as a string.
7 - `give_toy` which gives a toy to the dog in question. This

updates the↪→

8 `toys` attribute.
9 """

10

11 def __init__(self):
12 self.toys = []
13

14 def bark(self):
15 """
16 Returns the string Woof.
17 """
18 return "Woof"
19

20 def give_toy(self, toy):
21 """
22 Updates the instances toys list.
23 """
24 self.toys.append(toy)

If you now create two dogs:
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Jupyter input

1 auraya = PetDog()
2 riggins = PetDog()

Both have no toys:

Jupyter input

1 auraya.toys

[]

Jupyter input

1 riggins.toys

[]

Now when you want to give riggins a toy you need to specify which of those two empty
lists to update:

Jupyter input

1 riggins.give_toy("ball")
2 riggins.toys

['ball']

However, auraya still has no toys:

Jupyter input

1 auraya.toys

[]

When running riggins.give toy("ball"), internally the give toy method is tak-
ing self to be riggins and so the line self.toys.append(toy) in fact is running as
riggins.toys.append(toy).

The variable name self is a convention and not a functional requirement. If you modify
it (for example by using inheritance as explained in Section 13.2.6):
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Jupyter input

1 class OtherPetDog(PetDog):
2 """
3 A class for a Pet.
4

5 Has two methods:
6 - `bark` which returns "Woof" as a string.
7 - `give_toy` which gives a toy to the dog in question. This

updates the↪→

8 `toys` attribute.
9 """

10

11 def give_toy(the_dog_in_question, toy):
12 """
13 Updates the instances toys list.
14 """
15 the_dog_in_question.toys.append(toy)

Then you get the same outcome:

Jupyter input

1 riggins = OtherPetDog()
2 riggins.toys

[]

Jupyter input

1 riggins.give_toy("ball")
2 riggins.toys

['ball']

Indeed the line the dog in question.toys.append(toy) is run as riggins.toys.append(toy).
You should however use self as it is convention and helps with readability of your code.

13.4.3 Why use CamelCase for classes but snake case for functions?

This is specified by the Python convention which is called PEP8 [12].
These conventions are important as it helps with readability of code.

13.4.4 What is the difference between a method and a function?

A method is a function defined on a class and always takes a first parameter which is the
specific instance from which the method is called.
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Using a Command Line and
an Editor

In the first part of this book you used Jupyter notebooks as an interface to Python. This
has a number of advantages, the strongest of which is the ability to include both code and
prose in the same document. From this part of the book onwards you will explore another
approach to using Python which is to use a code editor and a command line tool as a direct
interface to your operating system.

In this chapter you will cover:

• Using the command line.

• Using an editor.

14.1 TUTORIAL

You will here consider a problem you have already solved in Chapter 3 but use a different
interface to do so than Jupyter. The code itself will be the same. The way you run it will
differ.

Rationalise the denominator of 1√
2+1

Open a command line tool:

1. On Windows search for Anaconda Prompt (it should be available to you after installing
Anaconda). See Chapter 2.

2. On OS X search for terminal. See Chapter 2.

Whether or not you are using the Windows or MacOS operating system changes the
commands you need to type. First, list the directory you are currently in:

On Windows:

Command line input

1 $ dir

On MacOS:
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Command line input

1 $ ls

This is similar to using your file explorer to view the contents in a given directory.
Similarly to the way you double click on a directory in the file explorer you can navigate to
a directory in the command line.

Throughout this book, when there are commands to be typed in a command line tool
they will be prefixed with a $. Do not type the $.

To do this you use the same command on both operating systems cd.
You will do this to navigate to your pfm directoy. For example if, as in Chapter 3, the

pfm directory was put on the Desktop directory, you would run the following:

Command line input

1 $ cd Desktop
2 $ cd pfm

The two statements are written under each other to denote that they are run one after
the other.

You will now create a new directory:

Command line input

1 $ mkdir scripts

Inside this directory you will run the same command as before to see the contents:
On Windows:

Command line input

1 $ dir

On MacOS:

Command line input

1 $ ls
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Figure 14.1 The output of dir on Windows.

If you have followed the steps described in Chapter 2, you will see something similar to
Figure 14.1 or Figure 14.2.

Before continuing with this directory you are going to install a powerful code editor.
1. Navigate to https://code.visualstudio.com.

2. Download the installer making sure it is the correct one for your operating system
(Windows, MacOS or Linux).

3. Run the installer.

Figure 14.2 The output of ls on MacOS.

This code editor will offer you a different way to write Python code.
Open VS code and create a new file.
In it write the following (which corresponds to the solution of our problem):

https://code.visualstudio.com
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Python file

1 """
2 This script displays the solution to the problem considered.
3 """
4 import sympy as sym
5

6 print("Question 1:")
7 expression = 1 / (sym.sqrt(2) + 1)
8 print(sym.simplify(expression))

This is shown in Figure 14.3.

Figure 14.3 The code in VS code.

Now save this as algebra.py inside the scripts directory created earlier as shown in
Figure 14.4.

VScode now recognises the Python language and adds syntax colouring. It also suggests
a plugin specific for the Python language as shown in Figure 14.5. There is more information
about plugins in Section 14.2.6.

All you have done so far is write the code. You now need to tell Python to run it. To do
this you will use the command line and run the same command on both operating systems:

Command line input

1 $ cd scripts

Now confirm that the algebra.py file is in that directory:
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Figure 14.4 Saving file in VScode.

Figure 14.5 Syntax colouring and plugin suggestion.
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On Windows:

Command line input

1 $ dir

On MacOS:

Command line input

1 $ ls

Now run the python code in that script:

Command line input

1 $ python algebra.py

The output of this is shown in Figure 14.6

Figure 14.6 Output of running script.

14.2 HOW TO

14.2.1 Navigate directories using the command line

In the command line the cd command (short for “change directory”) can be used to enter
a given directory.
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Usage

1 $ cd <directory>

The target directory must be contained in the directory you are currently in.

For example, to change directory into a directory called pfm:

Command line input

1 $ cd pfm

To go back to the previous directory use ..:

Command line input

1 $ cd ..

14.2.2 Create a new directory using the command line

In the command line the mkdir command (short for “make directory“) can be used to create
a new directory.

Usage

1 $ mkdir <directory>

For example, to create a director called scripts:

Command line input

1 $ mkdir scripts

14.2.3 See the contents of a directory in the command line

In the command line you can see the contents of the current directory:

• On Windows using dir

• On OS X using ls
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14.2.4 Run Python code in a file

To run code in a file type python followed by the name of the file in the command line.

Usage

1 $ python <file.py>

For example, to run code in a file called main.py:

Command line input

1 $ python main.py

14.2.5 Run Python code without using a file or Jupyter

At the command line if you type python without passing a filename this will create a prompt
in which you can directly write Python code.

Command line input

1 $ python

When doing this, you see a prompt appear with >>>, you can directly type python code
in there and press enter:

>>> 2 + 2
4

This interface to Python is called a Read-Eval-Print-Loop and is often referred to as a
REPL.

Using python is the simplest of python REPLs, there are others (for example ipython).

This interface to Python is quite limited and should only be used for quick access to
Python as a way to run simple commands.

14.2.6 Install VScode plugins

VScode is a powerful editor with a number of plugins for different languages and function-
alities.

To install a particular plugin in the menu bar, click on Code > Preferences >
Extensions.

From there you can search for a specific plugin and install it by clicking on the install
button.
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14.3 EXERCISES

1. Use the REPL (read-eval-print-loop) to carry out the following calculations:

(a) 3 + 8
(b) 3/7
(c) 456/21
(d) 43+2

2×5 − 5 1
2

2. Install the Python plugin for VScode.

3. Use the command line and a python script written in VScode to solve the following
problems:

(a) Find the solutions to the following equation: x2 − 3x + 2 = 1.
(b) Differentiate the following function: f(x) = cos(x)/4

(c) Find the determinant of A =


1/5 1
1 1


.

(d) Count the number of ways of picking 2 letters from “ABCD” where order does
not matter.

(e) Simulate the probability of picking a red token from a bag with 3 red tokens, 5
blue tokens and a yellow token.

(f) Obtain the first five terms of the sequence defined by:



a0 = 0,
a1 = 2,
an = 3an−1 + an−2, n ≥ 2

4. Install the Markdown all in one plugin for markdown in VScode and then:

(a) Create a new file main.md.
(b) Write some basic markdown in it.
(c) Use the plugin to preview the rendered markdown.

14.4 FURTHER INFORMATION

14.4.1 Why do you need to use the print function with an editor?

When using a Jupyter notebook, the last line of a cell corresponds to the output of the cell
and is automatically displayed. When running code written in an editor directly through the
Python interpreter there is nowhere for code to be output to. Thus, you need to specifically
tell it to display the code which is what the print statement does.

14.4.2 Can you use a Python plugin to run my code from inside my editor?

When using the Python plugin, buttons become available that let you run code without
using the command line. Before using those buttons it is good to become comfortable using
a command line tool to fully understand what the underlying process is. Furthermore, at
times when debugging sometimes the user interface might be at fault.
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14.4.3 Can I open a Jupyter notebook inside VScode?

When using the Python plugin it is actually possible to use Jupyter notebooks from within
VScode. The notebooks will not look exactly the same but have the same functionality as
shown in Figure 14.7.

Figure 14.7 A notebook in VScode.

14.4.4 What is the difference between an Integrated Development Environment and
an editor?

An Integrated Development Environment or IDE is another type of tool used to write code.
A popular one for Python is PyCharm. Generally IDEs are powerful tools designed for one
specific language whereas editors are supposedly lightweight and designed to be flexible to
be used with many languages.

Experiment with IDEs and/or editors to find what you prefer but throughout this book
VSCode.

14.4.5 Can I use \( and \) instead of $ for LATEX?

When using Jupyter notebooks (see Section 2.5.7) or the markdown preview feature in
VScode, the single $ and $$ must be used as delimiters for mathematics.
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Modularisation

This is the first of three chapters that aim to move from writing code that works to writing
software. In this particular chapter you will consider how to write your code in a structured
way.

In this chapter you will cover:

• Importing code from python files.

• Fragmenting code into modular components.

15.1 TUTORIAL

You will here consider a specific problem of a general type. You will not concentrate too
much on the writing of the code itself. Instead this chapter concentrates on how you can
write the code as software that will do more than just solve the specific problem. It will be
able to be used for further problems of the same type.

Consider a chain model of the Board Game “Snakes and Ladders”:

1. What is the shortest number of turns that are possible to win?

2. What is the average number of turns?

To solve this problem you will make use of the Python library numpy to carry out efficient
numerical calculations.

The problem you are considering is in fact an application of a mathematical object from
probability called a Chain which not be covered here; however the relevant ideas are that
the probability of being in the 100th square after k turns can be written down as:

(πP k)100

where

π = (1, 0, . . . , 0︸ ︷︷ ︸
100

)

and P ∈ R100×100; Pij represents the probability of being in the ith square and going
to the jth square after rolling the dice.

There are snakes and ladders between the squares as given in Table 15.1.
The matrix P will look like:

DOI: 10.1201/9781003451860-15 201
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TABLE 15.1 Snake and Ladders

Snake or Ladder From To
Ladder 3 19
Ladder 15 37
Ladder 22 42
Ladder 25 64
Ladder 41 73
Ladder 53 74
Ladder 63 86
Ladder 76 91
Ladder 84 98
Snake 11 7
Snake 18 13
Snake 28 12
Snake 36 34
Snake 77 16
Snake 47 26
Snake 83 39
Snake 92 75
Snake 99 70

P =




0 1/6 1/6 0 1/6 1/6 1/6 0 0 . . . 0
0 0 1/6 0 1/6 1/6 1/6 1/6 0 . . . 0
... 0 0 0 . . . . . . . . . . . . . . . . . . ...
0 0 0 0 0 0 0 . . . 0 0 1




Note that because of the ladder on square 3: P14 = 0 and P1,20 = 1/6. The first
row/column of P corresponds to the state of not being on the board.

A csv file containing this matrix P can be found at https://zenodo.org/record/4236275.
To be able to answer the first question you will write a function to compute πP k for

arbitrary π, k and P :

Python file

1 def get_long_run_state(pi, k, P):
2 """
3 For a Markov chain with transition matrix P and starting state

vector pi,↪→

4 obtain the state distribution after k steps.
5

6 This is done by computing pi P ˆ k
7

8 Parameters
9 ----------

10 pi : array
11 Starting state vector.
12 k : int
13 Number of iterations.

https://zenodo.org/record/4236275
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14 P : array
15 Transition matrix
16

17 Returns
18 -------
19 array
20 The state vector after k iterations
21 """
22 return pi @ np.linalg.matrix_power(P, k)

For the second question you are going make use of a theoretic result which is that if P
is of the form:

P =
(

Q R
0 I

)

In this case the fundamental matrix is defined by:

N = (I − Q)−1

The fundamental matrix of an absorbing chain has a number of potential applications.
One of which is to calculate the expected number of steps for the chain to be absorbed
given by:

t = N�

where � is a column of 1s.
To be able to code this you write a function to compute t but this requires “extracting”

Q from P :

Python file

1 def compute_t(P):
2 """
3 For an absorbing Markov chain with transition rate matrix this

computes the↪→

4 vector t which gives the expected number of steps until absorption.
5

6 Note that this does not assume P is in the required format.
7

8 Parameters
9 ----------

10 P : array
11 Transition matrix
12
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13 Returns
14 -------
15 array
16 Number of steps until absorption
17 """
18 indices_without_1_in_diagonal = np.where(P.diagonal() != 1)[0]
19 Q = P[indices_without_1_in_diagonal.reshape(-1, 1),

indices_without_1_in_diagonal]↪→

20

21 number_of_rows, _ = Q.shape
22 N = np.linalg.inv(np.eye(number_of_rows) - Q)
23 return N @ np.ones(number_of_rows)

You are in fact going to modularise that function. It does three things:

• Extracts the matrix Q from P ;

• Computes N ;

• Computes t.

All of those tasks could be useful in their own right so you are going to break up that
function into three separate functions:

Python file

1 def extract_Q(P):
2 """
3 For an absorbing Markov chain with transition rate matrix P this

computes the↪→

4 matrix Q.
5

6 Note that this does not assume that P is in the required format. It
7 identifies the rows and columns that have a 1 in the diagonal and

removes↪→

8 them.
9

10 Parameters
11 ----------
12 P : array
13 Transition matrix
14

15 Returns
16 -------
17 array
18 The matrix Q
19 """
20 indices_without_1_in_diagonal = np.where(P.diagonal() != 1)[0]
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21 Q = P[indices_without_1_in_diagonal.reshape(-1, 1),
indices_without_1_in_diagonal]↪→

22 return Q
23

24

25 def compute_N(Q):
26 """
27 For an absorbing Markov chain with transition rate matrix P that

gives↪→

28 matrix Q this computes the fundamental matrix N.
29

30 Parameters
31 ----------
32 Q : array
33 The matrix Q obtained from P
34

35 Returns
36 -------
37 array
38 The funamental matrix N
39 """
40 number_of_rows, _ = Q.shape
41 N = np.linalg.inv(np.eye(number_of_rows) - Q)
42 return N

This now allows you to redefine compute t in a simpler way:

Python file

1 def compute_t(P):
2 """
3 For an absorbing Markov chain with transition rate matrix this

computes the↪→

4 vector t which gives the expected number of steps until absorption.
5

6 Note that this does not assume P is in the required format.
7 """
8 Q = extract_Q(P)
9 N = compute_N(Q)

10 number_of_rows, _ = Q.shape
11 return N @ np.ones(number_of_rows)

All the code you have written so far is generic in nature so would be better placed
somewhere that it could be used for any other project.

You are going to put these three functions (and the necessary import numpy as np
statement) in an absorption.py file as can be seen in Figure 15.1.
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Figure 15.1 The three modularised function in a python file.

You will now use everything you have done so far:

• Download, and extract the data available at https://zenodo.org/record/4236275.
Put the main.csv file in the snakes and ladders directory.

• Open a Jupyter notebook in the snakes and ladders directory and call it main.ipynb.

This should look like the following:
snakes and ladders/

absorption.py
main.csv
main.ipynb

You can now use all of the code you have written in the notebook, first you can import
the functions in absorption.py like any other python library:

Jupyter input

1 import absorption

You will also import numpy and use it to read the data file:

https://zenodo.org/record/4236275
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Jupyter input

1 import numpy as np
2

3 P = np.loadtxt("main.csv", delimiter=",")

The above commands work because the 3 files are all in the same directory.

Now to compute the shortest number of turns:

Jupyter input

1 k = 1
2 pi = np.zeros(101)
3 pi[0] = 1
4 while absorption.get_long_run_state(pi, k, P)[-1] == 0:
5 k += 1
6 k

It is possible to arrive at the last square in six turns.
Now to compute the average length of the game:

Jupyter input

1 t = absorption.compute_t(P)
2 t[0]

43.49196169497175

15.2 HOW TO

15.2.1 Import code from Python files

Given a <file.py> file in a directory any other python process in the same directory can
import that file as it would a normal library.

Usage

1 import <file>

At this stage it is possible to uses any python object (a function, a class, a variable)
by referring to the <file.py> as a library:
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Usage

1 <file>.function
2 <file>.class
3 <file>.variable

15.2.2 Break up code into modular components

The aim of Modularising code is to identify specific components of the code that can be
isolated from the rest. In practice this means writing multiple functions that use the correct
inputs and outputs in sequence for an overall goal.

Often this allows you to write a more comprehensive docstring that explains specific
parts of the implemented process. As an example, consider the problem of wanting to pay
a shared bill after applying a tip, the following function will do this:

Jupyter input

1 def add_tip_and_get_bill_share(total, tip_proportion,
number_of_payers):↪→

2 """
3 This returns the share of a bill to be paid by `number_of_payers`
4 ensuring the total paid includes a tip.
5

6 Parameters
7 ----------
8 total : float
9 The total amount of the bill

10 tip_proportion : float
11 The proportion of the bill that should be added as a tip (a

number↪→

12 between 0 and 1)
13 number_of_payers : int
14 The number of people sharing the bill
15

16 Returns
17 -------
18 float
19 The amount each person should contribute
20 """
21 tip_amount = tip_proportion * total
22 total += tip_amount
23 return total / number_of_payers
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You can check that this works:

Jupyter input

1 add_tip_and_get_bill_share(total=100, tip_proportion=0.2,
number_of_payers=6)↪→

20.0

An improvement of the above would be:

Jupyter input

1 def add_tip(total, tip_proportion):
2 """
3 This adds the given proportion to a bill total.
4

5 Note that tip_proportion is a number between 0 and 1. A
tip_proportion of 0↪→

6 corresponds to no tip and a tip_proportion of 1 corresponds to
paying the↪→

7 total twice.
8

9 Parameters
10 ----------
11 total : float
12 The total amount of the bill
13 tip_proportion : float
14 The proportion of the bill that should be added as a tip (a

number↪→

15 between 0 and 1)
16

17 Returns
18 -------
19 float
20 The total value of the bill (including tip)
21 """
22 tip_amount = tip_proportion * total
23 return total + tip_amount
24

25

26 def get_bill_share(total, number_of_payers):
27 """
28 This returns the share of a bill by dividing the total by the

number of↪→

29 payers.
30

31 Parameters
32 ----------
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33 total : float
34 The total amount of the bill
35 number_of_payers : int
36 The number of people sharing the bill
37

38 Returns
39 -------
40 float
41 The amount each person should contribute
42 """
43 return total / number_of_payers

Then to use the above you would be able to explicitly write out each step which ensures
that there is clarity in what is being done:

Jupyter input

1 total = add_tip(total=100, tip_proportion=0.2)
2 get_bill_share(total=total, number_of_payers=6)

20.0

15.3 EXERCISES

1. Use the code written in Section 15.1 to obtain the average time until absorption from
the first state of the chain with the following transition matrices:

(a) P =


1/2 1/2
0 1



(b) P =




1/2 1/4 1/4
1/3 1/3 1/3
0 0 1




(c) P =


1 0
1/2 1/2



(d) P =




1/2 1/4 1/4
1/3 1/3 1/3
1/5 0 4/5




2. Modularise the following code by creating a function flip coin that takes a
probability of selecting heads variable.



Modularisation ■ 211

Jupyter input

1 import random
2

3 def sample_experiment(bag):
4 """
5 This samples a token from a given bag and then
6 selects a coin with a given probability.
7

8 If the sampled token is red then the probability
9 of selecting heads is 4/5 otherwise it is 2/5.

10

11 This function returns both the selected token
12 and the coin face.
13 """
14 selected_token = random.choice(bag)
15

16 if selected_token == "Red":
17 probability_of_selecting_heads = 4 / 5
18 else:
19 probability_of_selecting_heads = 2 / 5
20

21 if random.random() < probability_of_selecting_heads:
22 coin = "Heads"
23 else:
24 coin = "Tails"
25 return selected_token, coin

3. Modularise the following code by writing two further functions:

• get potential divisors: A function to return the integers between 2 and
√

N
for a given N .

• is divisor: A function to check if n|N (“n divides N”) for given n, N .

Jupyter input

1 import math
2

3 def is_prime(N):
4 """
5 Checks if a number N is prime by checking all that positive

integers↪→

6 numbers less sqrt(N) than it that divide it.
7

8 Note that if N is not a positive integer great than 1 then it
does not↪→

9 check: it returns False.
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10 """
11 if N <= 1 or type(N) is not int:
12 return False
13 for potential_divisor in range(2, int(math.sqrt(N)) + 1):
14 if (N % potential_divisor) == 0:
15 return False
16 return True

Confirm your work by comparing to the results of using sympy.isprime.

4. Write a stats.py file with two functions to implement the calculations of mean and
population variance.
Note that the mean is defined by:

x̄

∑N
i=1 xi

N

The population variance is defined by:

σ2 =
∑N

i=1(xi − x̄)2

N

Use your functions to compute the mean and population variance of the following
collections of numbers:

(a) S1 = (1, 2, 3, 4, 4, 4, 4, 4)
(b) S1 = (1)
(c) S1 = (1, 1, 1, 2, 3, 4, 4, 4, 4, 4)

Compare your results to the results of using the statistics.mean and statistics.pvariance.

15.4 FURTHER INFORMATION

15.4.1 Why modularise?

Best practice when writing code is breaking up of code into modular parts. Here is a guiding
principle described in [3]:

“Code should be obvious. When someone needs to make a change, they should
be able to find the code to be changed easily and make the change quickly
without introducing any errors.”

While this guiding principle is ambiguous and all concepts related to clean code writing
and refactoring are not things that can be covered in this book, one specific principle is the
one referred to in [4]:

“Functions should do one thing. They should do it well. They should do it only.”

In some texts on code architecture you will see arbitrary rules about how many lines of
code should be in a given function. Having a function with 10 or more lines of code might
indicate that it can be modularised. However, it is not recommended to follow such rules
strictly. Sometimes they might add more complexity than they remove. Make your code
clear and ensure your functions do one thing well and one thing only.
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15.4.2 Why do I get an import error?

The most probable explanation for this is that you are importing a file that is not in the
same directory or that you have not imported the file with the correct name.

As an example, if your code is in a library directory but that your notebook is in a
different directory then you will get an error as shown below:

Jupyter input

1 import library

---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
Cell In[1], line 1
----> 1 import library

ModuleNotFoundError: No module named 'library'

Similarly if you perhaps incorrectly saved your library.py file with a typo in the name
such as: librery.py then you would get the same error.

15.4.3 How do I make my file importable from other directories?

This falls under the subject matter of “packaging”. This is not covered in this book.
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Documentation

This is the second of three chapters that aims to move from writing code that works to
writing software. In this particular chapter you will consider how to write documentation
for your code.

In this chapter you will cover:

• Using the Diátaxis framework for documentation [9].

16.1 TUTORIAL

In this tutorial you will write documentation for the code you wrote in Section 15.1.
You start by creating a new file in VScode called README.md.

You will be writing your documentation in markdown.

Start by writing the title of your library and a quick single sentence description.

Markdown input

1 # Absorption
2

3 Functionality to study the absorbing Markov chains.

16.1.1 Writing a tutorial

You will then write your first section which is a tutorial.

The goal of a tutorial is to provide a hands on introduction and demonstration of the
software.

214 DOI: 10.1201/9781003451860-16
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Markdown input

1

2 In this tutorial we will see how to use `absorption` to study an
absorbing↪→

3 Markov chain. For some background information on absorbing Markov
chains we↪→

4 recommend: <https://en.wikipedia.org/wiki/Absorbing_Markov_chain>.
5

6 Given a transition matrix $P$ defined by:
7

8 $$
9 p = \begin{pmatrix}

10 1/2 & 1/4 & 1/4\\
11 1/3 & 1/3 & 1/3\\
12 0 & 0 & 1
13 \end{pmatrix}
14 $$
15

16 We will start by seeing how the chain evolves over time by starting
with an↪→

17 initial vector $\pi=(1,0,0)$. In the next code snippet we will import
the↪→

18 necessary libraries and create both $P$ and $\pi$:
19

20 ```python
21 import numpy as np
22

23 import absorption
24

25 pi = np.array([1, 0, 0])
26 P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0, 1]])
27 ```
28

29 We now see how the vector $\pi$ changes over time:
30

31 ```python
32 for k in range(10):
33 print(absorption.get_long_run_state(pi, k, P))
34 ```
35

36 This will give:
37

38 ```
39 [1. 0. 0.]
40 [0.5 0.25 0.25]
41 [0.33333333 0.20833333 0.45833333]
42 [0.23611111 0.15277778 0.61111111]

https://en.wikipedia.org/wiki/Absorbing_Markov_chain
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43 [0.16898148 0.1099537 0.72106481]
44 [0.12114198 0.0788966 0.79996142]
45 [0.08686986 0.05658436 0.85654578]
46 [0.06229638 0.04057892 0.8971247 ]
47 [0.0446745 0.0291004 0.9262251]
48 [0.03203738 0.02086876 0.94709386]
49 ```
50

51 We see that, as expected over time the probability of being in the
third state,↪→

52 which is absorbing, increases.
53

54 We can also use `absorption` to get the average number of steps until
55 absorption from each state:
56

57 ```python
58 absorption.compute_t(P)
59 ```
60

61 This gives:
62

63 ```
64 array([3.66666667, 3.33333333])
65 ```
66

67 We see that the expected amounts of steps from the first state is
slightly more↪→

68 than from the second.

This tutorial section allows newcomers to your code to see how it is intended to be
used.

16.1.2 Writing the how-to guides

In the next section you will write a series of how to guides, this is targeted at someone
who has perhaps worked through the tutorial already and wants to directly know how to
do a specific task.

Directly underneath what you have written so far write:

Markdown input

1

2 ## How to guides
3

4 ### How to compute the long run state of a system after a given number
of steps↪→

5
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6 Given a transition matrix $P$ and a state vector $\pi$, the state of
the system↪→

7 after $k$ steps is given by:
8

9 ```python
10 import numpy as np
11

12 import absorption
13

14 pi = np.array([0, 1, 0])
15 P = np.array([[1 / 3, 1 / 3, 1 / 3], [1 / 4, 1 / 4, 1 / 2], [0, 0, 1]])
16 absorption.get_long_run_state(pi=pi, k=10, P=P)
17 ```
18

19 This gives:
20

21 ```
22 array([0.0019552, 0.0019552, 0.9960896])
23 ```
24

25 ### How to extract the transitive state transition sub matrix $Q$
26

27 Given a transition matrix $P$, the sub matrix $Q$ that
28 corresponds to the transitions between transitive (i.e. not absorbing)

states can↪→

29 be extracted:
30

31 ```python
32 import numpy as np
33

34 import absorption
35

36 P = np.array([[1 / 3, 1 / 3, 1 / 3], [0, 1, 0], [1 / 4, 1 / 4, 1 / 2]])
37 absorption.extract_Q(P=P)
38 ```
39

40 This gives:
41

42 ```
43 array([[0.33333333, 0.33333333],
44 [0.25 , 0.5 ]])
45 ```
46

47 ### How to compute the fundamental matrix $N$
48

49 Given a transition matrix $P$, the fundamental matrix $N$
50 can be obtained:
51
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52 ```python
53 import numpy as np
54

55 import absorption
56

57 P = np.array([[1 / 3, 1 / 3, 1 / 3], [0, 1, 0], [1 / 4, 1 / 4, 1 / 2]])
58 Q = absorption.extract_Q(P=P)
59 absorption.compute_N(Q=Q)
60 ```
61

62 This gives:
63

64 ```
65 array([[2. , 1.33333333],
66 [1. , 2.66666667]])
67 ```
68

69 ### How to compute the average steps until absorption
70

71 Given a transition matrix $P$ and a state vector $\pi$, the average
number of↪→

72 steps until absorption from all states can be obtained:
73

74 ```python
75 import numpy as np
76

77 import absorption
78

79 P = np.array([[1 / 3, 1 / 3, 1 / 3], [0, 1, 0], [1 / 4, 1 / 4, 1 / 2]])
80 absorption.compute_t(P=P)
81 ```
82

83 This gives:
84

85 ```
86 array([3.33333333, 3.66666667])
87 ```

This how to section is an efficient collection of instructions to be able to carry out
specific tasks made possible by the software.

16.1.3 Writing the explanations section

In the next section you will write the explanations which aims to give more in depth
understanding not necessarily directly related to the code.
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Markdown input

1 ## Explanation
2

3 ### Brief overview of absorbing Markov chains
4

5 A Markov chain with a given transition matrix $P$ is a system that
moves from↪→

6 state to state randomly with the probabilities given by $P$.
7

8 For example:
9

10 $$
11 P = \begin{pmatrix}
12 1 / 3 & 1 / 3 & 1 / 3 \\
13 0 & 1 & 0 \\
14 1 / 4 & 1 / 4 & 1 / 2
15 \end{pmatrix}
16 $$
17

18 The corresponding Markov chain has 3 states and:
19

20 - $P_{11}=1/3$ means that when in state 1 there is a 1/3 chance of
staying in↪→

21 state 1.
22 - $P_{23}=0$ means that when in state 2 there is a 0 chance of staying

in↪→

23 state 1.
24 - $P_{22}=$ actually implies that once we are in state 2 that the only

next↪→

25 state is state 2.
26

27 In general:
28

29 $$
30 P_{ij} > 0 \text{ for all }ij
31 $$
32

33 $$
34 \sum_{j=0}ˆ{|P|} P_{ij} = 1 \text{ for all }i
35 $$
36

37 If $P_{ii}=1$ then state $i$ is an absorbing state from which no
further changes↪→

38 can occur.
39

40 In the case of absorbing markov chains there are a number of
quantities that can↪→
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41 be measured.
42

43 ### Calculating the state after a given number of iterations
44

45 Given a vector that describes the state of the system $\pi$ and a
transition↪→

46 matrix $P$, the state of the system after $k$ iterations will be given
by the↪→

47 following vector:
48

49 $$
50 \pi P ˆ k
51 $$
52

53 ### The canonical form of the transition matrix
54

55 A transition matrix $P$ is written in its canonical form when it can
be written↪→

56 as:
57

58 $$
59 P =
60 \left(\begin{array}{c|c}
61 Q & R \\\hline
62 0 & I
63 \end{array}\right)
64 $$
65

66 Where $Q$ is the matrix of transitions between non absorbing states.
67

68 For example, the canonical form of $P$ would be:
69

70 $$
71 \begin{pmatrix}
72 1 / 3 & 1 / 3 & 1 / 3 \\
73 1 / 4 & 1 / 2 & 1 / 4 \\
74 0 & 0 & 1 \\
75 \end{pmatrix}
76 $$
77

78 which would give:
79

80 $$
81 Q = \begin{pmatrix}
82 1 / 3 & 1 / 3 \\
83 1 / 4 & 1 / 2
84 \end{pmatrix}
85 $$
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86

87 ### The fundamental matrix
88

89 Given $Q$ the fundamental matrix $N$ is defined as:
90

91 $$N = (I - Q) ˆ{-1}$$
92

93 $N_{ij}$ corresponds to the expected number of times the chain will be
in state↪→

94 $j$ given that it started in state $i$.
95

96 ### The expected number of steps until absorption.
97

98 Given $N$, the expected number of steps until absorption is given by
the vector:↪→

99

100 $$
101 t = N \mathbb{1}
102 $$
103

104 where $\mathbb{1}$ denotes a vector of 1s.

This explanations section gives background reading as to how the code works.

16.1.4 Writing the reference section

In the next section you will write the reference which aims to be a concise collection of
reference material.

Markdown input

1 ## Reference
2

3 ### List of functionality
4

5 The following functions are written in `absorption`:
6

7 - `get_long_run_state`
8 - `extract_Q`
9 - `compute_N`

10 - `compute_t`
11

12 ### Bibliography
13

14 The wikipedia page on absorbing Markov chains gives a good overview of
the↪→

15 topic: <https://en.wikipedia.org/wiki/Absorbing_Markov_chain>

https://en.wikipedia.org/wiki/Absorbing_Markov_chain
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16

17 The following text is a recommended reference on Markov chains:
18

19 > Stewart, William J. Probability, Markov chains, queues, and
simulation: the↪→

20 > mathematical basis of performance modelling. Princeton university
press, 2009.↪→

Figure 16.1 shows the start of the markdown file in VScode alongside the preview.
Note that the Markdown all in one plugin ensures that the mathematics is rendered, see
Section 14.2.6 for information on installing plugins.

Figure 16.1 The README.md file in VScode with the rendered preview (using the Markdown
all in one plugin).

16.2 HOW TO

16.2.1 Write documentation

Follow the Diátaxis framework [9] for documentation.
This involves separating your documentation into four different sections based on sepa-

rate aims for readers.

• Tutorial: for learning.

• How to guides: to achieve a specific goal.

• Explanation: to understand.

• Reference: to find information.
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16.2.1.1 Write a tutorial

A tutorial should include step by step instructions with expected behaviours. This should
not focus on any deeper explanation.

An analogy of this is teaching a young toddler to build a toy train track. They do not
need to know the physics related to how the train will go through the track. They need only
to see how to lay the track pieces.

16.2.1.2 How to write a how to guide

A how to guide should provide a quick and to the point description of how to solve a specific
problem.

An analogy of this would be a recipe. The recipe will not necessarily explain how to
chop an onion and/or why you are chopping an onion. It will tell you how to chop an onion
as a step of cooking a particular meal.

16.2.1.3 How to write an explanation section

The explanation section should provide a deeper understanding of the concepts under the
code.

An analogy of this again related to a recipe would be a book on the chemistry of taste
and why a chopped onion adds a specific type of flavour to a meal.

16.2.1.4 How to write a reference section

The reference section should provide an overview of the specific tools, commands and indeed
place for background reading as well.

16.2.2 Write markdown

16.2.2.1 How to include section headers in markdown

To include a section header in markdown use #. The number of # corresponds to the level
of the section header.

Markdown input

1 # Section

For example:

Markdown input

1 # The absorption library
2

3 Functionality to study the absorbing Markov chains.
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16.2.2.2 Include code in markdown

To include code in markdown use three ‘ marks followed by the name of the language:

Markdown input

1 ```<language>
2

3 <code>
4 ```

For example:

Markdown input

1 ```python
2 import sympy as sym
3

4 x = sym.Symbol(''x'')
5 ```

It is also possible to include code in markdown using an indented block:
For example:

Markdown input

1 Here is some code:
2

3 import sympy as sym
4

5 x = sym.Symbol(''x'')

Using an indented block does not allow you to specify the language and can lead to
mistake when combining with other nested statement.

16.2.2.3 How to include a hyperlink in markdown

To include a hyperlink in markdown use []() language:

Markdown input

1 [text](url)

For example:
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Markdown input

1 The [Online Encyclopedia of Integer Sequences](https://oeis.org) is a
good resources for studying↪→

2 resources.

16.2.2.4 How to include an image in markdown

To include an image in markdown use ![]():

Markdown input

1 ![caption](path)

For example:

Markdown input

1 Here is an image:
2

3 ![An image](image.jpg)

If the image file is not located in the same directory as the markdown file, the path to
the file must be correct.

16.3 EXERCISES

Write documentation for the statistics.py file written in the exercises of Chapter 15.

16.4 FURTHER INFORMATION

16.4.1 What is documentation?

Documentation can have many different interpretations. A good definition is given in [5].

“The process of transferring valuable knowledge to other people now and also
to people in the future.”

It is important to realise that the target of the documentation can be the writer of the
software itself at a future date.

There are two types of documentation:

• Internal documentation which includes things like docstrings and a good choice of
variable names.

https://oeis.org
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• External documentation which includes things like the README.md and other sep-
arate documentation.

For a software project to be well documented, it needs both internal and external
documentation.

In [5] there are four properties of documentation:

• Reliable: it needs to be accurate.

• Low effort: it should require minimal effort to update when changes are made to the
code base.

• Collaborative: it should be a tool from which collaboration can occur.

• Insightful: it should give information not only to be able to use the code but also to
understand specific reasons why certain decisions have been made as to its design.

16.4.2 What is the purpose of the four separate sections in documentation?

As discussed in [9]:

“Tutorials are lessons that take the reader by the hand through a series of steps
to complete a project of some kind. They are what your project needs in order
to show a beginner that they can achieve something with it.”

“How-to guides take the reader through the steps required to solve a real-world
problem”’

“Reference guides are technical descriptions of the machinery and how to operate
it.”

“Explanation, or discussions, clarify and illuminate a particular topic. They
broaden the documentation’s coverage of a topic.”

It is natural when describing a project for the boundaries between these four topics to
become fuzzy. Thus, having them explicitly in four separate sections ensures the reader is
able to specifically find what they need.

16.4.3 What alternatives are there to writing documentation in the README.md file?

A single README.md file is a good way to start documenting code. However, as a project
grows it could be beneficial to use some other tools. One such example of this is to use
sphinx. This uses a different markup language called restructured text and helps build
more complex documents but also interfaces to the code itself if necessary. For example,
it is possible to include the code docstrings directly in the documentation (a good way of
adding to the reference section).
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Testing

This is the third and last chapter that shows how to move from writing code that works to
writing software. In this particular chapter you will consider how to write automated tests
for your software.

In this chapter you will cover:

• Assert statements to test code.

• Testing documentation.

17.1 TUTORIAL

In this tutorial you will write code to ensure the correctness of the software you have written
in the tutorials of Chapters 15 and 16.

The software for absorption.py is in fact across two separate files:

• absorption.py: the source code. You will check this using unit tests

• README.md: the documentation. You will check this using doctests.

17.1.1 Writing tests for code

Recalling the code written in absorption.py in Section 15.1, there are four functions that
need to be tested:

• get long run state

• extract Q

• compute N

• compute t

In the directory that contains absorption.py create a new Python file called:
test absorption.py.

Write the following functions to test each of the functions in absorption.py:

DOI: 10.1201/9781003451860-17 227
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Python file

1 import numpy as np
2

3 import absorption
4

5 def test_long_run_state_for_known_number_of_states():
6 """
7 This tests the `long_run_state` for a small example matrix
8 """
9 pi = np.array([1, 0, 0])

10 P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0,
1]])↪→

11 pi_after_5_steps = absorption.get_long_run_state(pi=pi, k=5, P=P)
12 assert np.array_equal(pi_after_5_steps, pi @

np.linalg.matrix_power(P, 5)), "Did not get expected result
for pi after 5 steps"

↪→

↪→

13

14

15 def test_long_run_state_when_starting_in_absorbing_state():
16 """
17 This tests the `long_run_state` for a small example matrix.
18

19 In this test we start in the absorbing state, the state vector
should not↪→

20 change.
21 """
22 pi = np.array([0, 0, 1])
23 P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0,

1]])↪→

24 pi_after_5_steps = absorption.get_long_run_state(pi=pi, k=5, P=P)
25 assert np.array_equal(pi_after_5_steps, pi)
26

27

28 test_long_run_state_for_known_number_of_states()
29 test_long_run_state_when_starting_in_absorbing_state()

The two functions you have written do not include a return statement but instead
include an assert statement. An assert is followed by two values separated by a
comma:

1. A boolean that is to be True or False.

2. A string that is output if the boolean is “False”.

To run those tests, run the script at the command line:
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Command line input

1 $ python test_absorption.py

When running the tests if everything has been done correctly, there will be no output:
the 2 functions have been called and the assertions have passed. See Figure 17.1.

Figure 17.1 Running the tests with no errors.

For each of the 4 functions in absorption.py, you can now add further tests and ensure
they are also called at the end. The full test absorption.py file should look like:

Python file

1 import numpy as np
2

3 import absorption
4

5 def test_long_run_state_for_known_number_of_states():
6 """
7 This tests the `long_run_state` for a small example matrix
8 """
9 pi = np.array([1, 0, 0])

10 P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0,
1]])↪→

11 pi_after_5_steps = absorption.get_long_run_state(pi=pi, k=5, P=P)
12 assert np.array_equal(pi_after_5_steps, pi @

np.linalg.matrix_power(P, 5)), "Did not get expected result
for pi after 5 steps"

↪→

↪→
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13

14

15 def test_long_run_state_when_starting_in_absorbing_state():
16 """
17 This tests the `long_run_state` for a small example matrix.
18

19 In this test we start in the absorbing state, the state vector
should not↪→

20 change.
21 """
22 pi = np.array([0, 0, 1])
23 P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0,

1]])↪→

24 pi_after_5_steps = absorption.get_long_run_state(pi=pi, k=5, P=P)
25 assert np.array_equal(pi_after_5_steps, pi)
26

27

28 def test_extract_Q():
29 """
30 This tests that the submatrix Q can be extracted from a given

matrix P.↪→

31 """
32 P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0,

1]])↪→

33 Q = absorption.extract_Q(P)
34 expected_Q = np.array([[1 / 2, 1 / 4], [1 / 3, 1 / 3]])
35 assert np.array_equal(Q, expected_Q), f"The expected Q did not

match, the code obtained {Q}"↪→

36

37

38 def test_compute_N():
39 """
40 This tests the computation of the fundamental matrix N
41 """
42 P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0,

1]])↪→

43 Q = absorption.extract_Q(P)
44 N = absorption.compute_N(Q)
45 expected_N = np.array([[8 / 3, 1], [4 / 3, 2]])
46 assert np.allclose(N, expected_N), f"The expected N did not match,

the code obtained {N}"↪→

47

48

49 def test_compute_t():
50 """
51 This tests the computation of the number of steps until absorption

t.↪→

52 """
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53 P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0,
1]])↪→

54 t = absorption.compute_t(P)
55 expected_t = np.array([11 / 3, 10 / 3])
56 assert np.allclose(t, expected_t), f"The expected t did not match,

the code obtained {t}"↪→

57

58

59 test_long_run_state_for_known_number_of_states()
60 test_long_run_state_when_starting_in_absorbing_state()
61 test_extract_Q()
62 test_compute_N()
63 test_compute_t()

The numpy.array equal and numpy.allclose compare equality of arrays. They return
True or False depending on whether the two passed arrays are equal or approximately
equal (respectively).

numpy.allclose should be used when comparing numpy arrays that might be dif-
ferent due to numerical imprecision.

You can experiment by changing some of the code or the tests and see the
way the tests fail. See Figure 17.2 where the following specific error has been introduced
into absorption.py: P.diagonal() == 1 is incorrect and should be P.diagonal() != 1.

As and when you add more features to absorption.py you will also add tests.
Software is compromised of both code and documentation. So far you have tested your

code, now you will test your documentation.

17.1.2 Testing documentation

To be able to check the Python code written in the documentation (see Chapter 16) is
correct, you need to write the code using a specific format:

• >>> to denote python code

• ... to denote secondary lines of multi-line python code.

• Nothing to denote the expected output.

As an example, in Section 16.1, you have written:
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Figure 17.2 Running the tests with an error in the source code.

Markdown input

1 ```python
2 import numpy as np
3

4 import absorption
5

6 pi = np.array([1, 0, 0])
7 P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0, 1]])
8 ```
9

10 We now see how the vector $\pi$ changes over time:
11

12 ```python
13 for k in range(10):
14 print(absorption.get_long_run_state(pi, k, P))
15 ```
16
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17 This will give:
18

19 ```
20 [1. 0. 0.]
21 [0.5 0.25 0.25]
22 [0.33333333 0.20833333 0.45833333]
23 [0.23611111 0.15277778 0.61111111]
24 [0.16898148 0.1099537 0.72106481]
25 [0.12114198 0.0788966 0.79996142]
26 [0.08686986 0.05658436 0.85654578]
27 [0.06229638 0.04057892 0.8971247 ]
28 [0.0446745 0.0291004 0.9262251]
29 [0.03203738 0.02086876 0.94709386]
30

31 ```

You will modify the above to be:

Markdown input

1 ```python
2 >>> import numpy as np
3 >>> import absorption
4 >>> pi = np.array([1, 0, 0])
5 >>> P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0,

1]])↪→

6

7 ```
8

9 We now see how the vector $\pi$ changes over time:
10

11 ```python
12 >>> for k in range(10):
13 ... print(absorption.get_long_run_state(pi, k, P))
14 [1. 0. 0.]
15 [0.5 0.25 0.25]
16 [0.33333333 0.20833333 0.45833333]
17 [0.23611111 0.15277778 0.61111111]
18 [0.16898148 0.1099537 0.72106481]
19 [0.12114198 0.0788966 0.79996142]
20 [0.08686986 0.05658436 0.85654578]
21 [0.06229638 0.04057892 0.8971247 ]
22 [0.0446745 0.0291004 0.9262251]
23 [0.03203738 0.02086876 0.94709386]
24

25 ```
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To test the documentation gives the results that are written, run the following at the
command line:

Command line input

1 $ python -m doctest README.md

When testing the documentation, if there are no errors there will be no output as shown
in Figure 17.3.

Figure 17.3 Running the doctests with no errors.

Similarly to testing the code, if an error is included in the documentation, an error will
be displayed when running the doctests. This is shown in Figure 17.4 where the final output
has been changed to include an error: -1 is written instead of 0.94709386.

Here is the fully modified tutorial of the documentation:

Markdown input

1 # Absorption
2

3 Functionality to study absorbing Markov chains.
4

5 ## Tutorial
6

7 In this tutorial we will see how to use `absorption` to study an
absorbing↪→

8 Markov chain. For some background information on absorbing Markov
chains we↪→
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Figure 17.4 Running the doctests with an error.

9 recommend: <https://en.wikipedia.org/wiki/Absorbing_Markov_chain>.
10

11 Given a transition matrix $P$ defined by:
12

13 $$
14 p = \begin{pmatrix}
15 1/2 & 1/4 & 1/4\\
16 1/3 & 1/3 & 1/3\\
17 0 & 0 & 1
18 \end{pmatrix}
19 $$
20

21 We will start by seeing how the chain evolves over time by starting
with an↪→

22 initial vector $\pi=(1,0,0)$. In the next code snippet we will import
the↪→

23 necessary libraries and create both $P$ and $\pi$:
24

25 ```python
26 >>> import numpy as np
27 >>> import absorption
28 >>> pi = np.array([1, 0, 0])
29 >>> P = np.array([[1 / 2, 1 / 4, 1 / 4], [1 / 3, 1 / 3, 1 / 3], [0, 0,

1]])↪→

30

https://en.wikipedia.org/wiki/Absorbing_Markov_chain
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31 ```
32

33 We now see how the vector $\pi$ changes over time:
34

35 ```python
36 >>> for k in range(10):
37 ... print(absorption.get_long_run_state(pi, k, P))
38 [1. 0. 0.]
39 [0.5 0.25 0.25]
40 [0.33333333 0.20833333 0.45833333]
41 [0.23611111 0.15277778 0.61111111]
42 [0.16898148 0.1099537 0.72106481]
43 [0.12114198 0.0788966 0.79996142]
44 [0.08686986 0.05658436 0.85654578]
45 [0.06229638 0.04057892 0.8971247 ]
46 [0.0446745 0.0291004 0.9262251]
47 [0.03203738 0.02086876 0.94709386]
48

49 ```
50

51 We see that, as expected over time the probability of being in the
third state,↪→

52 which is absorbing, increases.
53

54 We can also use `absorption` to get the average number of steps until
55 absorption from each state:
56

57 ```python
58 >>> absorption.compute_t(P)
59 array([3.66666667, 3.33333333])
60

61 ```
62

63 We see that the expected amounts of steps from the first state is
slightly more↪→

64 than from the second.

17.1.3 Documenting the tests

Finally it is important to document how to run the tests. The reference section is an
appropriate place to put this. Add the following to the README.md file:
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Markdown input

1 ### Testing the software
2

3 To test the code:
4

5 ```
6 $ python test_absorption.py
7 ```
8

9 To test the documentation:
10

11 ```
12 $ python -m doctest README.md
13 ```

17.2 HOW TO

17.2.1 Write an assert statement

An assert statement is followed by 2 values: a boolean and an optional string that gets
returned if the boolean is False.

Usage

1 assert boolean, string

For example, given a function that adds one to a variable:

Jupyter input

1 def add_one(a):
2 """
3 Returns a + 1
4 """
5 return a + 1

You can assert the expected behaviour:

Jupyter input

1 assert add_one(5) == 6, "The function gave the wrong answer."

Note that if you change the function to include an error, for example, here adding 2 and
not 1, and run the same assert you get an error as well as the specified string.
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Jupyter input

1 def add_one(a):
2 """
3 Returns a + 1
4 """
5 return a + 2
6

7

8 assert add_one(5) == 6, "The function gave the wrong answer."

---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[3], line 8

2 """
3 Returns a + 1
4 """
5 return a + 2

----> 8 assert add_one(5) == 6, "The function gave the wrong answer."

AssertionError: The function gave the wrong answer.

17.2.2 Write assert statements for code that acts randomly

When making an assertion about code that behaves in a random manner, use seeding as
described in Section 7.2.9.

For example:

Jupyter input

1 import random
2

3

4 def roll_a_dice():
5 """
6 Pick a random integer between 1 and 6 (inclusive)
7 """
8 return random.choice(range(1, 7))

To test this, include a number of seeded assertions:
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Jupyter input

1 random.seed(0)
2 assert roll_a_dice() == 4, "The 0 seed did not give the expected

result"↪→

3 random.seed(1)
4 assert roll_a_dice() == 2, "The 1 seed did not give the expected

result"↪→

5 random.seed(2)
6 assert roll_a_dice() == 1, "The 2 seed did not give the expected

result"↪→

7 random.seed(3)
8 assert roll_a_dice() == 2, "The 3 seed did not give the expected

result"↪→

You can also check behaviour over a number of repetitions:

Jupyter input

1 random.seed(0)
2 samples = [roll_a_dice() for repetition in range(1000)]
3 all_values = {1, 2, 3, 4, 5, 6}
4 assert set(samples) == all_values, "Not all values have been obtained

over 1000 repetitions"↪→

You can also confirm that the count of a given value is as expected:

Jupyter input

1 assert [samples.count(k) for k in range(1, 7)] == [193, 150, 166, 170,
152, 169], "The count of the values is not giving the expected
count"

↪→

↪→

The last assertion used the count method on a list that counts a given number of items
in a list.

17.2.3 Write a test file

To write tests, assertion statements should be put into a file separate from the code in
functions.

For example, if the dice.py file contained:
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Python file

1 import random
2

3

4 def roll_a_dice():
5 """
6 Pick a random integer between 1 and 6 (inclusive)
7 """
8 return random.choice(range(1, 7))

Then a separate test dice.py file with the following would be written:

Python file

1 import dice
2

3

4 def test_roll_a_dice_with_specific_values():
5 """
6 Check the roll a dice function gives specific numbers for a number

of seeds.↪→

7 """
8 random.seed(0)
9 assert dice.roll_a_dice() == 4, "The 0 seed did not give the

expected result"↪→

10 random.seed(1)
11 assert dice.roll_a_dice() == 2, "The 1 seed did not give the

expected result"↪→

12 random.seed(2)
13 assert dice.roll_a_dice() == 1, "The 2 seed did not give the

expected result"↪→

14 random.seed(3)
15 assert dice.roll_a_dice() == 2, "The 3 seed did not give the

expected result"↪→

16

17

18 def test_roll_a_dice_for_a_large_sample():
19 """
20 Collect a sample of 1000 rolls and confirm that we have expected

results.↪→

21 """
22 random.seed(0)
23 samples = [dice.roll_a_dice() for repetition in range(1000)]
24 all_values = {1, 2, 3, 4, 5, 6}
25 assert set(samples) == all_values, "Not all values have been

obtained over 1000 repetitions"↪→
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26 expected_counts = [193, 150, 166, 170, 152, 169]
27 assert [samples.count(k) for k in range(1, 7)] == expected_counts,

"The count of the values is not giving the expected count"↪→

28

29 test_roll_a_dice_with_specific_values()
30 test_roll_a_dice_for_a_large_sample()

To run the tests you would then type the following at the command line:

Command line input

1 $ python test_dice.py

17.2.4 Format doctests

When writing code in documentation if you write it using a specific format, then python
can be used to confirm that the code and its output is correct.

Markdown input

1 >>> <python_code>
2 <expected_output
3 >>> <python_code_over_multiples_lines>
4 ... <python_code_over_multiple_lines>
5 <expected_output>

• >>> is marks the start of a python statement.

• ... is used if the statement is multiple lines.

• The expected output is written after the python statements.

For example, if you were documenting the following code written in a dice.py file:

Python file

1 import random
2

3

4 def roll_a_dice():
5 """
6 Pick a random integer between 1 and 6 (inclusive)
7 """
8 return random.choice(range(1, 7))
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You would write:

Markdown input

1 >>> import dice
2 >>> random.seed(0)
3 >>> dice.roll_a_dice()
4 4
5

17.2.5 Run doctests

Given a file with doctests, to run them type the following at the command line:

Usage

1 $ python -m doctest <file>

For example:

Command line input

1 $ python -m doctest README.md

17.3 EXERCISES

Write tests for the statistics.py file written in the exercises of Chapters 15 and 16.
Run the tests.

17.4 FURTHER INFORMATION

17.4.1 Why are tests written as functions?

In Section 17.1 you wrote all the tests using assert statements inside of functions. Techni-
cally this is not necessary as you could write a single script with all the assert statements
one after the other.

This is not recommended: by using functions you directly have a place to document
the test (in the docstring) and the tests themselves are modularised. Furthermore, this is
actually how to write the tests when using a more efficient way of running tests as described
in Section 17.4.2.

17.4.2 Is there a more efficient way to run tests?

Writing tests as a script and directly running them has one immediate problem: once the
first assert statement fails, the rest of them are not run.

There is a Python library for running tests called pytest [7].
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17.4.3 What should be tested?

The short answer to this is that all software should be tested and that software is compro-
mised of documentation and code.

Note that it is often not sufficient to test a function in a single way. For example, consider
a function that does two different things depending on the parity of some input:

Python file

1 def feedback_on_guess(guess, chosen_number):
2 """
3 Returns whether or not a guess is:
4

5 - Larger than a chosen_number
6 - Smaller than a chosen_number
7 - Equal to a chosen number
8 """
9 if guess < chosen_number:

10 return "Guess is lower than chosen number"
11 if guess > chosen_number:
12 return "Guess is larger than chosen number"
13 return "Guess is equal to chosen number"

In this case you would need to write at least three tests that check the three behaviours.
In practice there might be some functionality that is not tested but this should be made
clear and explicit. Documentation explaining the lack of tests should be written.

17.4.4 Why do you need doctests?

The purpose of doctests is to ensure that the code written in documentation is correct.
It is important to not use doctests to test the functionality of the code: this risks making

the documentation unclear.

17.4.5 What is test driven development?

Test driven development is the development process of writing the test before you write the
code. While this might seem counter-intuitive, it is in fact an efficient approach to writing
robust code.

In practice the process is as follows:

1. Write a test for some new functionality.

2. Run the tests to confirm that it fails (as the functionality is not yet written).

3. Write the functionality.

4. Run the test.

5. Modify the test and/or the functionality

Steps 4 and 5 might be repeated many times.
A good overview of test driven development is given in [8].
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17.4.6 How are modularisation, documentation and testing related?

In Chapters 15, 16, and 17, three concepts that move from writing code that works to
writing software that is reliable have been discussed:

• Modularisation.

• Documentation.

• Testing.

In reality all three of these concepts are closely related and fundamental to good
software. Figure 17.5 shows this.

Figure 17.5 The relationship between modularisation, documentation and testing.
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C H A P T E R 18

How This Book Is Written

This chapter include some specific information about the book itself.
This book is written using Jupyterbook [2].
The source files are written in the myst format which is a plain text format for Jupyter

notebooks. This ensures:

• That the notebooks are version controlled effectively.

• The output of the code is an actual computation.

The computations carried out in this book were carried out with python version 3.10.14.
The library versions used are:

• jupyter version 1.0.0.

• matching version 1.4.3.

• matplotlib version 3.9.0.

• numpy version 1.26.4.

• scipy version 1.13.0.

• sympy version 1.12.
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